A196149 Numbers whose divisors increase by a factor of 3 or less.
1, 2, 3, 4, 6, 8, 9, 10, 12, 15, 16, 18, 20, 21, 24, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 54, 56, 60, 63, 64, 66, 70, 72, 75, 78, 80, 81, 84, 88, 90, 96, 99, 100, 102, 104, 105, 108, 110, 112, 117, 120, 126, 128, 130, 132, 135, 136, 140, 144, 147, 150
Offset: 1
Keywords
Examples
14 is not a term because its divisors are 1,2,7,14, and the gap from 2 to 7 is more than a factor of 3. - _N. J. A. Sloane_, Aug 03 2015
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Saias, Entiers à diviseurs denses 1, Journal of Number Theory, Vol. 62, No. 1 (1997), pp. 163-191.
- Terence Tao, A Truncated Elementary Selberg Sieve of Pintz. (blog entry defining y-densely divisible)
- Terence Tao et al., Polymath8 home page.
- Andreas Weingartner, Practical numbers and the distribution of divisors, The Quarterly Journal of Mathematics, Vol. 66, No. 2 (2015), pp. 743-758; arXiv preprint, arXiv:1405.2585 [math.NT], 2014-2015.
- Andreas Weingartner, On the constant factor in several related asymptotic estimates, Math. Comp., Vol. 88, No. 318 (2019), pp. 1883-1902; arXiv preprint, arXiv:1705.06349 [math.NT], 2017-2018.
Programs
-
Haskell
a196149 n = a196149_list !! (n-1) a196149_list = filter f [1..] where f n = all (<= 0) $ zipWith (-) (tail divs) (map (* 3) divs) where divs = a027750_row' n -- Reinhard Zumkeller, Jun 25 2015, Sep 28 2011
-
Mathematica
dif3[n_]:=Max[#[[2]]/#[[1]]&/@Partition[Divisors[n],2,1]]<=3; Select[ Range[ 200],dif3] (* Harvey P. Dale, Jun 08 2015 *)
-
PARI
is(n)=my(d=divisors(n));for(i=2,#d,if(d[i]>3*d[i-1],return(0)));1 \\ Charles R Greathouse IV, Jul 06 2013
-
Python
from sympy import divisors def ok(n): d = divisors(n) return all(d[i]/d[i-1] <= 3 for i in range(1, len(d))) print(list(filter(ok, range(1, 151)))) # Michael S. Branicky, Jun 25 2021
Formula
a(n) = A052287(n) / 3.
a(n) = C*n*log(n*log(n)) + O(n), where C = 0.486513… (See comments). - Andreas Weingartner, Jun 25 2021
Comments