cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A285849 Number T(n,k) of permutations of [n] with k ordered cycles such that equal-sized cycles are ordered with increasing least elements; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 6, 1, 0, 6, 19, 18, 1, 0, 24, 100, 105, 40, 1, 0, 120, 508, 1005, 430, 75, 1, 0, 720, 3528, 6762, 6300, 1400, 126, 1, 0, 5040, 24876, 61572, 62601, 28700, 3822, 196, 1, 0, 40320, 219168, 558548, 706608, 431445, 105336, 9114, 288, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 27 2017

Keywords

Comments

Each cycle is written with the smallest element first and equal-sized cycles are arranged in increasing order of their first elements.

Examples

			T(3,1) = 2: (123), (132).
T(3,2) = 6: (1)(23), (23)(1), (2)(13), (13)(2), (3)(12), (12)(3).
T(3,3) = 1: (1)(2)(3).
Triangle T(n,k) begins:
  1;
  0,    1;
  0,    1,     1;
  0,    2,     6,     1;
  0,    6,    19,    18,     1;
  0,   24,   100,   105,    40,     1;
  0,  120,   508,  1005,   430,    75,    1;
  0,  720,  3528,  6762,  6300,  1400,  126,   1;
  0, 5040, 24876, 61572, 62601, 28700, 3822, 196, 1;
		

Crossrefs

Row sums give A196301.
Main diagonal and first lower diagonal give: A000012, A002411.
T(2n,n) gives A285862.

Programs

  • Maple
    b:= proc(n, i, p) option remember; expand(`if`(n=0 or i=1,
          (p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat
          [multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)):
    seq(T(n), n=0..12);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_, p_] := b[n, i, p] = Expand[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n, 0]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 28 2018, after Alois P. Heinz *)

A120774 Number of ordered set partitions of [n] where equal-sized blocks are ordered with increasing least elements.

Original entry on oeis.org

1, 1, 2, 8, 31, 147, 899, 5777, 41024, 322488, 2749325, 25118777, 245389896, 2554780438, 28009868787, 323746545433, 3933023224691, 49924332801387, 661988844566017, 9138403573970063, 131043199040556235, 1949750421507432009, 30031656711776544610
Offset: 0

Views

Author

Alford Arnold, Jul 12 2006

Keywords

Comments

Old name was: Row sums of A179233.
a(n) is the number of ways to linearly order the blocks in each set partition of {1,2,...,n} where two blocks are considered identical if they have the same number of elements. - Geoffrey Critzer, Sep 29 2011

Examples

			A179233 begins 1; 1; 1 1; 6 1 1; 8 3 18 1 1 ... with row sums 1, 1 2 8 31 147 ...
a(3) = 8: 123, 1|23, 23|1, 2|13, 13|2, 3|12, 12|3, 1|2|3. - _Alois P. Heinz_, Apr 27 2017
		

Crossrefs

Row sums of A179233, A285824.
Main diagonal of A327244.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
          (p+n)!/n!, add(b(n-i*j, i-1, p+j)*combinat
          [multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 27 2017
  • Mathematica
    f[{x_,y_}]:= x!^y y!;   Table[Total[Table[n!,{PartitionsP[n]}]/Apply[Times,Map[f,Map[Tally,Partitions[n]],{2}],2] * Apply[Multinomial,Map[Last,Map[Tally,Partitions[n]],{2}],2]],{n,0,20}]  (* Geoffrey Critzer, Sep 29 2011 *)

Extensions

Leading 1 inserted, definition simplified by R. J. Mathar, Sep 28 2011
a(15) corrected, more terms, and new name (using Geoffrey Critzer's comment) from Alois P. Heinz, Apr 27 2017
Showing 1-2 of 2 results.