A285849 Number T(n,k) of permutations of [n] with k ordered cycles such that equal-sized cycles are ordered with increasing least elements; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 2, 6, 1, 0, 6, 19, 18, 1, 0, 24, 100, 105, 40, 1, 0, 120, 508, 1005, 430, 75, 1, 0, 720, 3528, 6762, 6300, 1400, 126, 1, 0, 5040, 24876, 61572, 62601, 28700, 3822, 196, 1, 0, 40320, 219168, 558548, 706608, 431445, 105336, 9114, 288, 1
Offset: 0
Examples
T(3,1) = 2: (123), (132). T(3,2) = 6: (1)(23), (23)(1), (2)(13), (13)(2), (3)(12), (12)(3). T(3,3) = 1: (1)(2)(3). Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 2, 6, 1; 0, 6, 19, 18, 1; 0, 24, 100, 105, 40, 1; 0, 120, 508, 1005, 430, 75, 1; 0, 720, 3528, 6762, 6300, 1400, 126, 1; 0, 5040, 24876, 61572, 62601, 28700, 3822, 196, 1;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Wikipedia, Permutation
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; expand(`if`(n=0 or i=1, (p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat [multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)): seq(T(n), n=0..12);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, p_] := b[n, i, p] = Expand[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n, 0]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 28 2018, after Alois P. Heinz *)
Comments