A104150
Shifted factorial numbers: a(0)=0, a(n) = (n-1)!.
Original entry on oeis.org
0, 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000
Offset: 0
- A. N. Khovanskii. The Application of Continued Fractions and Their Generalizations to Problem in Approximation Theory. Groningen: Noordhoff, Netherlands, 1963. See p.141 (10.19)
Main diagonal of
A295027 (for n > 0).
-
[0] cat [Factorial(n-1): n in [1..25]]; // Vincenzo Librandi, Dec 25 2012
-
Join[{0,1},Range[20]!] (* Harvey P. Dale, Dec 09 2013 *)
-
my(x='x+O('x^30)); concat([0], Vec(serlaplace(-log(1-x)))) \\ G. C. Greubel, May 15 2018
-
[stirling_number1(n,1) for n in range(0, 22)] # Zerinvary Lajos, May 16 2009
A285824
Number T(n,k) of ordered set partitions of [n] into k blocks such that equal-sized blocks are ordered with increasing least elements; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 6, 1, 0, 1, 11, 18, 1, 0, 1, 30, 75, 40, 1, 0, 1, 52, 420, 350, 75, 1, 0, 1, 126, 1218, 3080, 1225, 126, 1, 0, 1, 219, 4242, 17129, 15750, 3486, 196, 1, 0, 1, 510, 14563, 82488, 152355, 63756, 8526, 288, 1, 0, 1, 896, 42930, 464650, 1049895, 954387, 217560, 18600, 405, 1
Offset: 0
T(3,1) = 1: 123.
T(3,2) = 6: 1|23, 23|1, 2|13, 13|2, 3|12, 12|3.
T(3,3) = 1: 1|2|3.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 6, 1;
0, 1, 11, 18, 1;
0, 1, 30, 75, 40, 1;
0, 1, 52, 420, 350, 75, 1;
0, 1, 126, 1218, 3080, 1225, 126, 1;
0, 1, 219, 4242, 17129, 15750, 3486, 196, 1;
...
Columns k=0-10 give:
A000007,
A057427,
A285917,
A285918,
A285919,
A285920,
A285921,
A285922,
A285923,
A285924,
A285925.
-
b:= proc(n, i, p) option remember; expand(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*x^j*combinat
[multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)):
seq(T(n), n=0..12);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Expand[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n-i*j, i-1, p+j]*x^j*multinomial[n, Join[{n-i*j}, Table[i, j]]]/ j!^2, {j, 0, n/i}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n, 0]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 28 2018, after Alois P. Heinz *)
A285862
Number of permutations of [2n] with n ordered cycles such that equal-sized cycles are ordered with increasing least elements.
Original entry on oeis.org
1, 1, 19, 1005, 62601, 6061545, 868380535, 142349568361, 27564092244689, 6325532235438273, 1673378033771898675, 505141951803309946125, 170002056228253072537065, 63255335047795174479833625, 25805276337820748477042392695, 11427131417576257617280878155625
Offset: 0
a(1) = 1: (12).
a(2) = 19: (123)(4), (4)(123), (132)(4), (4)(132), (124)(3), (3)(124), (142)(3), (3)(142), (134)(2), (2)(134), (143)(2), (2)(143), (1)(234), (234)(1), (1)(243), (243)(1), (12)(34), (13)(24), (14)(23).
-
b:= proc(n, i, p) option remember; expand(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat
[multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)))
end:
a:= n-> coeff(b(2*n$2, 0), x, n):
seq(a(n), n=0..20);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Expand[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]]];
a[n_] := Coefficient[b[2n, 2n, 0], x, n];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 29 2018, from Maple *)
A196301
The number of ways to linearly order the cycles in each permutation of {1,2,...,n} where two cycles are considered identical if they have the same length.
Original entry on oeis.org
1, 1, 2, 9, 44, 270, 2139, 18837, 186808, 2070828, 25861140, 350000640, 5145279611, 81492295079, 1381583542234, 25097285838765, 484602684624080, 9894705390149400, 213418984780492164, 4842425874827849868, 115231446547162291200, 2874808892527026177240
Offset: 0
a(4) = 44 because in the conjugacy classes of S(4): (4), (3)(1), (2)(2), (2)(1)(1), (1)(1)(1)(1) there are (respectively) 6 permutations times 1 arrangement, 8 permutations times 2 arrangements, 3 permutations times 1 arrangement, 6 permutations times 3 arrangements, and 1 permutation times 1 arrangement. So 6*1+8*2+3*1+6*3+1*1 = 44.
-
b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
(p+n)!/n!, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat
[multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..25); # Alois P. Heinz, Apr 27 2017
-
Needs["Combinatorica`"]; f[{x_, y_}]:= x^y y!; Table[Total[Table[n!, {PartitionsP[n]}]/Apply[Times, Map[f, Map[Tally, Partitions[n]], {2}], 2] * Apply[Multinomial, Map[Last, Map[Tally, Partitions[n]], {2}], 2]], {n, 0, 20}]
A285853
Number of permutations of [n] with two ordered cycles such that equal-sized cycles are ordered with increasing least elements.
Original entry on oeis.org
1, 6, 19, 100, 508, 3528, 24876, 219168, 1980576, 21257280, 234434880, 2972885760, 38715943680, 566931294720, 8514866707200, 141468564787200, 2407290355814400, 44753976117043200, 850965783594393600, 17505896073523200000, 367844990453821440000
Offset: 2
a(2) = 1: (1)(2).
a(3) = 6: (1)(23), (23)(1), (2)(13), (13)(2), (3)(12), (12)(3).
a(4) = 19: (123)(4), (4)(123), (132)(4), (4)(132), (124)(3), (3)(124), (142)(3), (3)(142), (134)(2), (2)(134), (143)(2), (2)(143), (1)(234), (234)(1), (1)(243), (243)(1), (12)(34), (13)(24), (14)(23).
-
a:= n-> 2*add(binomial(n, k)*(k-1)!*(n-k-1)!, k=1..n/2)-
`if`(n::even, 3/2*binomial(n, n/2)*(n/2-1)!^2, 0):
seq(a(n), n=2..25);
# second Maple program:
a:= proc(n) option remember; `if`(n<5, [0, 1, 6, 19][n],
((2*n-1)*(n-1)*a(n-1)+(n-2)*(2*n^2-5*n-1)*a(n-2)
-(n-3)^2*((2*n^2-5*n+4)*a(n-3)+(n-4)^2*a(n-4)))/(2*n))
end:
seq(a(n), n=2..25);
-
Table[(n-1)!*(2*HarmonicNumber[n] - (3 + (-1)^n)/n), {n, 2, 25}] (* Vaclav Kotesovec, Apr 29 2017 *)
A285854
Number of permutations of [n] with three ordered cycles such that equal-sized cycles are ordered with increasing least elements.
Original entry on oeis.org
1, 18, 105, 1005, 6762, 61572, 558548, 5807700, 62757288, 777291768, 9831740256, 139111566048, 2048834965824, 32758018496640, 545051532176640, 9812211976039680, 182219827628874240, 3627461543458659840, 74765368810365696000, 1632210845693218560000
Offset: 3
-
b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat
[multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)), x, 4)
end:
a:= n-> coeff(b(n$2, 0), x, 3):
seq(a(n), n=3..25);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]], {x, 0, 4}];
a[n_] := Coefficient[b[n, n, 0], x, 3];
Table[a[n], {n, 3, 25}] (* Jean-François Alcover, May 30 2018, from Maple *)
A285855
Number of permutations of [n] with four ordered cycles such that equal-sized cycles are ordered with increasing least elements.
Original entry on oeis.org
1, 40, 430, 6300, 62601, 706608, 8985560, 107911760, 1439518696, 20364348576, 304923257184, 4772610024000, 80570363703696, 1409795519233536, 26263500315144192, 511153327733815296, 10464902116976779776, 223154458395064842240, 5010190272214829475840
Offset: 4
-
b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat
[multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)), x, 5)
end:
a:= n-> coeff(b(n$2, 0), x, 4):
seq(a(n), n=4..25);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]], {x, 0, 4}];
a[n_] := Coefficient[b[n, n, 0], x, 4];
Table[a[n], {n, 4, 25}] (* Jean-François Alcover, May 30 2018, from Maple *)
A285856
Number of permutations of [n] with five ordered cycles such that equal-sized cycles are ordered with increasing least elements.
Original entry on oeis.org
1, 75, 1400, 28700, 431445, 6061545, 101969450, 1511771250, 24207257360, 398261143280, 7126152051200, 125804137586400, 2407653784466640, 47180921713154640, 978889889736934560, 20912829727776156000, 470414513170923511680, 10891943467262968682880
Offset: 5
-
b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat
[multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)), x, 6)
end:
a:= n-> coeff(b(n$2, 0), x, 5):
seq(a(n), n=5..25);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]], {x, 0, 6}];
a[n_] := Coefficient[b[n, n, 0], x, 5];
Table[a[n], {n, 5, 25}] (* Jean-François Alcover, May 30 2018, from Maple *)
A285857
Number of permutations of [n] with six ordered cycles such that equal-sized cycles are ordered with increasing least elements.
Original entry on oeis.org
1, 126, 3822, 105336, 2312163, 41420610, 868380535, 16453085220, 312866654100, 6063351173880, 127050688947000, 2603853165950400, 56141875342402480, 1242418296237553440, 28627706535786406800, 683460419058369489600, 16802904218347937067840
Offset: 6
-
b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat
[multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)), x, 7)
end:
a:= n-> coeff(b(n$2, 0), x, 6):
seq(a(n), n=6..25);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]], {x, 0, 7}];
a[n_] := Coefficient[b[n, n, 0], x, 6];
Table[a[n], {n, 6, 25}] (* Jean-François Alcover, May 30 2018, from Maple *)
A285858
Number of permutations of [n] with seven ordered cycles such that equal-sized cycles are ordered with increasing least elements.
Original entry on oeis.org
1, 196, 9114, 330750, 10094931, 234138366, 5932023097, 142349568361, 3233779086538, 74147737383720, 1785843031638120, 42966579274786440, 1047584220405271360, 26222209747260881200, 671966452779878874800, 17944599541172975286000, 485789620369911667323360
Offset: 7
-
b:= proc(n, i, p) option remember; series(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat
[multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)), x, 8)
end:
a:= n-> coeff(b(n$2, 0), x, 7):
seq(a(n), n=7..25);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Series[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]], {x, 0, 8}];
a[n_] := Coefficient[b[n, n, 0], x, 7];
Table[a[n], {n, 7, 25}] (* Jean-François Alcover, May 30 2018, from Maple *)
Showing 1-10 of 13 results.
Comments