A196510 Smallest number greater than n that is palindromic in base 3 and base n.
6643, 4, 10, 26, 28, 8, 121, 10, 121, 244, 13, 28, 1210, 16, 68, 784, 1733, 20, 1604, 242, 23, 2096, 100, 26, 937, 28, 203, 3280, 1952, 160, 1249, 68, 280, 1366, 14483, 608, 11293, 40, 82, 5948, 7102, 484, 2069, 644, 1222, 4372, 784, 100, 6452, 52
Offset: 2
Links
- Zak Seidov, Table of n, a(n) for n = 2..1000
- Erich Friedman, Problem of the month June 1999
Crossrefs
Cf. A056749.
Programs
-
Maple
ispal := proc(n,b) dgs := convert(n,base,b) ; for i from 1 to nops(dgs)/2 do if op(i,dgs) <> op(-i,dgs) then return false; end if; end do; return true; end proc: A196510 := proc(n) for k from n+1 do if ispal(k,n) and ispal(k,3) then return k; end if; end do: end proc: seq(A196510(n),n=2..30) ; # R. J. Mathar, Oct 13 2011
-
Mathematica
pal3n[n_]:=Module[{k=n+1},While[IntegerDigits[k,3]!=Reverse[ IntegerDigits[ k,3]] || IntegerDigits[ k,n]!= Reverse[ IntegerDigits[k,n]],k++];k]; Array[ pal3n,60,2] (* Harvey P. Dale, Jan 16 2022 *)
-
Sage
def A196510(n): is_palindrome = lambda x,b=10: x.digits(b) == (x.digits(b))[::-1] return next(k for k in IntegerRange(n+1, infinity) if is_palindrome(k,n) and is_palindrome(k,3)) # D. S. McNeil, Oct 03 2011