cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196510 Smallest number greater than n that is palindromic in base 3 and base n.

Original entry on oeis.org

6643, 4, 10, 26, 28, 8, 121, 10, 121, 244, 13, 28, 1210, 16, 68, 784, 1733, 20, 1604, 242, 23, 2096, 100, 26, 937, 28, 203, 3280, 1952, 160, 1249, 68, 280, 1366, 14483, 608, 11293, 40, 82, 5948, 7102, 484, 2069, 644, 1222, 4372, 784, 100, 6452, 52
Offset: 2

Views

Author

Kausthub Gudipati, Oct 03 2011

Keywords

Crossrefs

Cf. A056749.

Programs

  • Maple
    ispal := proc(n,b)
            dgs := convert(n,base,b) ;
            for i from 1 to nops(dgs)/2 do
                    if op(i,dgs) <> op(-i,dgs) then
                            return false;
                    end if;
            end do;
            return true;
    end proc:
    A196510 := proc(n)
            for k from n+1 do
                    if ispal(k,n) and ispal(k,3) then
                            return k;
                    end if;
            end do:
    end proc:
    seq(A196510(n),n=2..30) ; # R. J. Mathar, Oct 13 2011
  • Mathematica
    pal3n[n_]:=Module[{k=n+1},While[IntegerDigits[k,3]!=Reverse[ IntegerDigits[ k,3]] || IntegerDigits[ k,n]!= Reverse[ IntegerDigits[k,n]],k++];k]; Array[ pal3n,60,2] (* Harvey P. Dale, Jan 16 2022 *)
  • Sage
    def A196510(n):
        is_palindrome = lambda x,b=10: x.digits(b) == (x.digits(b))[::-1]
        return next(k for k in IntegerRange(n+1, infinity) if is_palindrome(k,n) and is_palindrome(k,3))
    # D. S. McNeil, Oct 03 2011