A196678 a(n) = 5*binomial(4*n+5,n)/(4*n+5).
1, 5, 30, 200, 1425, 10626, 81900, 647280, 5217300, 42724825, 354465254, 2973052680, 25168220350, 214762810500, 1845308367000, 15951899986272, 138638564739180, 1210677947695620, 10617706139119000, 93477423115076000
Offset: 0
References
- C. H. Pah, M. R. Wahiddin, Combinatorial Interpretation of Raney Numbers and Tree Enumerations, Open Journal of Discrete Mathematics, 2015, 5, 1-9; http://www.scirp.org/journal/ojdm; http://dx.doi.org/10.4236/ojdm.2015.51001
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..110
- C. B. Pah and M. Saburov, Single Polygon Counting on Cayley Tree of Order 4: Generalized Catalan Numbers, Middle-East Journal of Scientific Research 13 (Mathematical Applications in Engineering): 01-05, 2013, ISSN 1990-9233.
- Karol A. Penson and Karol Zyczkowski, Product of Ginibre matrices : Fuss-Catalan and Raney distribution, arXiv version
- Wikipedia, Fuss-Catalan number
- Karol Zyczkowski, Karol A. Penson, Ion Nechita and Benoit Collins, Generating random density matrices, J. Math Phys. 52, 062201 (2011). arXiv version.
Crossrefs
Programs
-
Magma
[5*Binomial(4*n+5,n)/(4*n+5): n in [0..30]]; // Vincenzo Librandi, Oct 07 2011
Formula
O.g.f.: hypergeom([5/4, 3/2, 7/4], [7/3, 8/3], (256 z)/27)
E.g.f.: hypergeom([5/4, 3/2, 7/4], [1, 7/3, 8/3], (256 z)/27)
From _Peter Bala, Oct 16 2015: (Start)
O.g.f. A(x) = 1/x * series reversion (x*C(-x)^5), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11.
A(x)^(1/5) is the o.g.f. for A002293. (End)
D-finite with recurrence 3*n*(3*n+5)*(3*n+4)*a(n) -8*(4*n+1)*(2*n+1)*(4*n+3)*a(n-1)=0. - R. J. Mathar, Aug 01 2022
Extensions
Offset changed from 1 to 0 and extended by Vincenzo Librandi, Oct 07 2011
Comments