A196787 a(n) = 3*a(n-1) - 2*a(n-2) - a(n-4) + a(n-5) with initial terms 1, 1, 1, 3, 6.
1, 1, 1, 3, 6, 12, 24, 46, 87, 163, 303, 561, 1036, 1910, 3518, 6476, 11917, 21925, 40333, 74191, 136466, 251008, 461684, 849178, 1561891, 2872775, 5283867, 9718557, 17875224, 32877674, 60471482, 111224408, 204573593, 376269513, 692067545
Offset: 1
Examples
a(7) = (a(6): 12) + (a(5): 6) + (a(4): 3) + (n-4: 3) = 24.
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-2,0,-1,1).
Programs
-
Mathematica
LinearRecurrence[{3, -2, 0, -1, 1}, {1, 1, 1, 3, 6}, 42] (* T. D. Noe, Oct 06 2011 *)
-
PARI
x='x+O('x^43); Vec(x*(-1+2*x-2*x^3) / ((x-1)^2*(x^3+x^2+x-1))) \\ Georg Fischer, Apr 03 2019
Formula
a(1)=1, a(2)=1, a(3)=1; a(n) = a(n-1) + a(n-2) + a(n-3) + n - 4 for n >= 4.
G.f.: x*(-1+2*x-2*x^3) / ((x-1)^2*(x^3+x^2+x-1)).
Extensions
Better name from Charles R Greathouse IV, Oct 06 2011
Edited and corrected by Georg Fischer, Apr 03 2019