cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196878 Decimal expansion of (Pi/8)*(6*zeta(3)+Pi^2*log(2)+4*log(2)^3).

Original entry on oeis.org

6, 0, 4, 1, 8, 8, 2, 9, 0, 9, 7, 7, 5, 0, 9, 3, 5, 2, 2, 1, 5, 0, 4, 2, 4, 1, 3, 0, 6, 7, 5, 9, 9, 5, 9, 8, 5, 5, 0, 8, 7, 1, 0, 3, 0, 5, 7, 7, 4, 6, 4, 1, 9, 0, 7, 2, 5, 8, 6, 0, 1, 0, 1, 5, 2, 6, 0, 0, 4, 3, 0, 2, 5, 4, 6, 5, 5, 7, 5, 8, 1, 6, 0, 4, 0, 4, 7, 0, 8, 2, 6, 5, 8, 8, 2, 6, 1, 6, 9, 5, 1, 5, 5, 8, 1
Offset: 1

Views

Author

Seiichi Kirikami, Oct 07 2011

Keywords

Comments

The absolute value of the integral {x=0..Pi/2} log(sin(x))^3 dx. The absolute value of m=3 of sqrt(Pi)/2*(d^m/da^m(gamma((a+1)/2)/gamma(a/2+1))) at a=0. - Seiichi Kirikami and Peter J. C. Moses, Oct 07 2011

Examples

			6.041882909775093522150424130675995...
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 4th edition, 3.621.1

Crossrefs

Programs

  • Maple
    Pi/8*(6*Zeta(3)+Pi^2*log(2)+4*log(2)^3) ; evalf(%) ; # R. J. Mathar, Oct 08 2011
  • Mathematica
    RealDigits[N[Pi/8 (6 Zeta[3] + Pi^2 Log[2] + 4 Log[2]^3), 150]][[1]]
    Sqrt[Pi]/2*Derivative[3][Gamma[(#+1)/2]/Gamma[#/2+1]&][0] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 25 2013 *)
  • PARI
    Pi/8*(6*zeta(3)+Pi^2*log(2)+4*log(2)^3) \\ G. C. Greubel, Feb 12 2017

Formula

Equals A019675*(6*A002117 + A002388*A002162 + 4*A002162^3).