A197038 Numbers k such that (2^k + 3^k)/97 is prime.
12, 412, 436, 916
Offset: 1
Examples
a(1) = 12 => (2^12+3^12)/97 = 5521 is prime. (2^a(2)+3^a(2))/97 has 195 digits. (2^a(3)+3^a(3))/97 has 207 digits. (2^a(4)+3^a(4))/97 has 436 digits.
Programs
-
Mathematica
lst={}; Do[If[PrimeQ[(2^k+3^k)/97], AppendTo[lst, k]], {k, 1000}]; lst Select[Range[10000],PrimeQ[(2^#+3^#)/97]&] (* Harvey P. Dale, Aug 22 2013 *)
-
PARI
is(n)=ispseudoprime((2^n+3^n)/97) \\ Charles R Greathouse IV, Jun 13 2017
Comments