cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A197054 T(n,k)=Number of nXk 0..4 arrays with each element equal to the number of its horizontal and vertical zero neighbors.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 3, 4, 4, 3, 4, 6, 10, 6, 4, 5, 10, 18, 18, 10, 5, 7, 16, 38, 42, 38, 16, 7, 9, 26, 78, 108, 108, 78, 26, 9, 12, 42, 156, 274, 358, 274, 156, 42, 12, 16, 68, 320, 692, 1132, 1132, 692, 320, 68, 16, 21, 110, 654, 1754, 3580, 4468, 3580, 1754, 654, 110, 21, 28
Offset: 1

Views

Author

R. H. Hardin, Oct 09 2011

Keywords

Comments

Every 0 is next to 0 0's, every 1 is next to 1 0's, every 2 is next to 2 0's, every 3 is next to 3 0's, every 4 is next to 4 0's
Also, the number of maximal independent vertex sets in the grid graph P_n X P_k. - Andrew Howroyd, May 16 2017

Examples

			Table starts
..1...2....2.....3......4.......5........7.........9.........12..........16
..2...2....4.....6.....10......16.......26........42.........68.........110
..2...4...10....18.....38......78......156.......320........654........1326
..3...6...18....42....108.....274......692......1754.......4442.......11248
..4..10...38...108....358....1132.....3580.....11382......36270......114992
..5..16...78...274...1132....4468....17742.....70616.....281202.....1117442
..7..26..156...692...3580...17742....88056....439338....2192602....10912392
..9..42..320..1754..11382...70616...439338...2745186...17155374...106972582
.12..68..654..4442..36270..281202..2192602..17155374..134355866..1049189170
.16.110.1326.11248.114992.1117442.10912392.106972582.1049189170.10264692132
...
Some solutions for n=6 k=4
..0..2..1..0....0..2..0..1....2..0..2..0....0..3..0..2....0..2..1..0
..2..0..1..2....1..1..1..1....0..2..1..1....2..0..4..0....3..0..1..2
..1..1..2..0....1..0..2..0....2..1..0..2....1..2..0..2....0..3..1..0
..0..3..0..3....1..1..1..1....0..2..2..0....0..1..1..1....2..0..1..2
..3..0..4..0....0..3..0..2....3..0..1..2....1..1..1..0....1..1..2..0
..0..3..0..2....2..0..3..0....0..2..1..0....1..0..1..1....0..2..0..2
		

Crossrefs

Column 1 is A000931(n+6).
Column 2 is A006355(n+1).
Columns 3-7 are A197049, A197050, A197051, A197052, A197053.
Main diagonal is A197048.
Cf. A089934 (independent sets), A218354 (dominating sets).

A197149 Decimal expansion of the shortest distance from the x axis through (1,1) to the line y=3x.

Original entry on oeis.org

1, 9, 9, 9, 1, 5, 8, 3, 9, 9, 5, 8, 0, 3, 4, 4, 2, 6, 8, 8, 1, 7, 4, 2, 3, 5, 4, 3, 8, 4, 6, 1, 6, 4, 7, 3, 4, 1, 3, 2, 8, 2, 3, 4, 7, 1, 1, 8, 9, 0, 6, 8, 3, 7, 7, 0, 9, 2, 8, 1, 2, 8, 1, 0, 4, 6, 8, 5, 4, 8, 5, 2, 8, 7, 0, 0, 4, 9, 0, 3, 2, 7, 6, 5, 3, 7, 3, 7, 5, 1, 3, 1, 8, 9, 2, 0, 5, 5, 5
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2011

Keywords

Comments

The shortest segment from one side of an angle T through a point P inside T is called the Philo line of P in T. For discussions and guides to related sequences, see A197032, A197008 and A195284.

Examples

			length of Philo line:    1.999158399580...
endpoint on x axis:    (1.60479, 0); see A197148
endpoint on line y=3x: (0.570212, 1.71064)
		

Crossrefs

Programs

  • Mathematica
    f[t_] := (t - k*t/(k + m*t - m*h))^2 + (m*k*t/(k + m*t - m*h))^2;
    g[t_] := D[f[t], t]; Factor[g[t]]
    p[t_] := h^2 k + k^3 - h^3 m - h k^2 m - 3 h k t + 3 h^2 m t + 2 k t^2 - 3 h m t^2 + m t^3
    m = 3; h = 1; k = 1;(* slope m, point (h,k) *)
    t = t1 /. FindRoot[p[t1] == 0, {t1, 1, 2}, WorkingPrecision -> 100]
    RealDigits[t] (* A197148 *)
    {N[t], 0} (* endpoint on x axis *)
    {N[k*t/(k + m*t - m*h)],
    N[m*k*t/(k + m*t - m*h)]} (* endpt on line y=3x *)
    d = N[Sqrt[f[t]], 100]
    RealDigits[d]  (* A197149 *)
    Show[Plot[{k*(x - t)/(h - t), m*x}, {x, 0, 2}],
    ContourPlot[(x - h)^2 + (y - k)^2 == .001, {x, 0, 4}, {y, 0, 3}], PlotRange -> {0, 2}, AspectRatio -> Automatic]

A231882 Number of maximal 2-independent sets in the planar 3 X n grid graph.

Original entry on oeis.org

0, 3, 4, 11, 17, 36, 69, 133, 254, 499, 959, 1852, 3589, 6943, 13410, 25951, 50197, 97050, 187699, 363047, 702066, 1357755, 2625947, 5078438, 9821417, 18994465, 36734648, 71043261, 137395463, 265718350, 513889567, 993844901, 1922062694, 3717202293, 7188941039
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2013

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,3,1,0,1,-2,0,-1},{0,3,4,11,17,36,69,133,254,499},40] (* Harvey P. Dale, Oct 05 2017 *)

Formula

Euler et al. give an explicit g.f. and recurrence.
G.f.: x*(3 + x + 7*x^2 - 3*x^3 + 4*x^4 - 4*x^5 - x^6 - 2*x^7 - x^8) / ((1 + x)*(1 - 2*x + 2*x^2 - 5*x^3 + 4*x^4 - 4*x^5 + 3*x^6 - x^7 + x^8)). - Colin Barker, Oct 03 2017

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jun 10 2017

A293177 Triangle read by rows: T(m,n) = number of maximal independent sets in m X n rectangular grid graph (m>=1, 1<=n<=m).

Original entry on oeis.org

1, 2, 2, 2, 4, 10, 3, 6, 18, 42, 4, 10, 38, 108, 358, 5, 16, 78, 274, 1132, 4468, 7, 26, 156, 692, 3580, 17742, 88056, 9, 42, 320, 1754, 11382, 70616, 439338, 2745186, 12, 68, 654, 4442, 36270, 281202, 2192602, 17155374, 16, 110, 1326, 11248, 114992, 1117442, 10912392, 106972582
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2017

Keywords

Examples

			Triangle begins:
1,
2,2,
2,4,10,
3,6,18,42,
4,10,38,108,358,
5,16,78,274,1132,4468,
7,26,156,692,3580,17742,88056,
9,42,320,1754,11382,70616,439338,2745186,
12,68,654,4442,36270,281202,2192602,17155374,
16,110,1326,11248,114992,1117442,10912392,106972582,
...
		

Crossrefs

Main diagonal is A197048.
Rows 3,4,5,6,... form the beginnings of A197049, A197050, A197051, A197052, ..., respectively.
Triangular version of A197054.
Showing 1-4 of 4 results.