cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A089934 Table T(n,k) of the number of n X k matrices on {0,1} without adjacent 0's in any row or column.

Original entry on oeis.org

2, 3, 3, 5, 7, 5, 8, 17, 17, 8, 13, 41, 63, 41, 13, 21, 99, 227, 227, 99, 21, 34, 239, 827, 1234, 827, 239, 34, 55, 577, 2999, 6743, 6743, 2999, 577, 55, 89, 1393, 10897, 36787, 55447, 36787, 10897, 1393, 89, 144, 3363, 39561, 200798, 454385, 454385, 200798
Offset: 1

Views

Author

Marc LeBrun, Nov 15 2003

Keywords

Comments

Recurrence orders are A089935. n X 1/1 X n patterns interpreted as binary values is A003714.
Number of independent vertex sets in the P_n X P_k grid graph. - Andrew Howroyd, Jun 06 2017
All columns (or rows) are linear recurrences with constant coefficients and order of the recurrence <= A001224(k+1). - Andrew Howroyd, Dec 24 2019
The enumeration of tiling "W-shaped" polyominoes in a (n+1) X (k+1) rectangle, whose shapes are (no flipping or rotating allowed):
.. .._. ... ...
|| ||_| .||_| .||_|
|| ||_| .||_|
|| ||_|
|| ... - _Liang Kai, Apr 19 2025

Examples

			Table starts:
  ========================================================
  n\k|  1   2     3      4       5        6          7
  ---|----------------------------------------------------
  1  |  2   3     5      8      13       21         34 ...
  2  |  3   7    17     41      99      239        577 ...
  3  |  5  17    63    227     827     2999      10897 ...
  4  |  8  41   227   1234    6743    36787     200798 ...
  5  | 13  99   827   6743   55447   454385    3729091 ...
  6  | 21 239  2999  36787  454385  5598861   69050253 ...
  7  | 34 577 10897 200798 3729091 69050253 1280128950 ...
  ... - _Andrew Howroyd_, Jun 06 2017
a(2,2)=7:
  11 11 11 10 10 01 01
  11 10 01 11 01 11 10
		

Crossrefs

T(n, 0) = T(0, m) = 1. Zero based table is A089980.
Main diagonal is A006506.
Cf. A089935, A001224, A197054 (maximal independent sets), A218354, A003714.

Programs

  • PARI
    step(v, S)={vector(#v, i, sum(j=1, #v, v[j]*!bitand(S[i], S[j])))}
    mkS(k)={select(b->!bitand(b,b>>1), [0..2^k-1])}
    T(n,k)={my(S=mkS(k), v=vector(#S, i, i==1)); for(n=1, n, v=step(v,S)); vecsum(v)} \\ Andrew Howroyd, Dec 24 2019

A217637 T(n,k)=Number of nXk arrays of the minimum value of corresponding elements and their horizontal and vertical neighbors in a random 0..1 nXk array.

Original entry on oeis.org

2, 2, 2, 4, 6, 4, 6, 16, 16, 6, 10, 38, 66, 38, 10, 16, 98, 244, 244, 98, 16, 26, 244, 968, 1418, 968, 244, 26, 42, 614, 3726, 8706, 8706, 3726, 614, 42, 68, 1542, 14520, 52120, 83074, 52120, 14520, 1542, 68, 110, 3872, 56352, 315378, 773348, 773348, 315378
Offset: 1

Views

Author

R. H. Hardin, Oct 09 2012

Keywords

Comments

Number of maximal independent sets in the graph P_2 X P_n X P_k. - Andrew Howroyd, Jun 10 2017

Examples

			Table starts
...2.....2........4..........6...........10..............16................26
...2.....6.......16.........38...........98.............244...............614
...4....16.......66........244..........968............3726.............14520
...6....38......244.......1418.........8706...........52120............315378
..10....98......968.......8706........83074..........773348...........7272142
..16...244.....3726......52120.......773348........11181454.........163361868
..26...614....14520.....315378......7272142.......163361868........3709621842
..42..1542....56352....1900838.....68138974......2378097084.......83923710538
..68..3872...218978...11472148....639248556.....34661572702.....1901055652804
.110..9726...850620...69210290...5994907930....505010822224....43046530809006
.178.24426..3304624..417586442..56226693158...7358779655656...974841850791586
.288.61348.12837742.2519466108.527340415924.107224919634686.22075731493018104
...
Some solutions for n=3 k=4
..1..0..0..1....0..0..0..1....1..0..1..1....1..1..0..0....1..0..0..0
..0..0..0..0....0..0..1..1....0..0..0..1....0..0..1..0....1..1..0..0
..1..0..0..0....0..0..0..1....1..0..1..1....0..0..0..1....1..0..0..0
		

Crossrefs

Columns 1-3 are A006355(n+1), A217631, A217632.
Cf. A197054.

A197049 Number of n X 3 0..4 arrays with each element equal to the number its horizontal and vertical zero neighbors.

Original entry on oeis.org

1, 2, 4, 10, 18, 38, 78, 156, 320, 654, 1326, 2706, 5518, 11228, 22884, 46634, 94978, 193518, 394286, 803220, 1636448, 3334030, 6792334, 13838202, 28192958, 57437684, 117018884, 238404906, 485705682, 989536598, 2016000430, 4107230284, 8367729920, 17047719214
Offset: 0

Views

Author

R. H. Hardin, Oct 09 2011

Keywords

Comments

Every 0 is next to 0 0's, every 1 is next to 1 0's, every 2 is next to 2 0's, every 3 is next to 3 0's, every 4 is next to 4 0's.
In other words, the number of maximal independent vertex sets (and minimal vertex covers) in the 3 X n grid graph. - Eric W. Weisstein, Aug 07 2017

Examples

			Some solutions for n=5:
  2  0  2    0  1  1    2  0  1    0  3  0    0  3  0    0  3  0    0  2  0
  0  4  0    1  2  0    0  2  1    3  0  2    2  0  2    2  0  3    1  1  1
  2  0  3    2  0  3    2  1  0    0  2  1    1  1  1    1  2  0    1  0  2
  1  2  0    0  4  0    0  2  1    1  2  0    0  3  0    0  2  1    1  2  0
  0  1  1    2  0  2    2  0  1    1  0  2    2  0  2    2  0  1    0  1  1
		

Crossrefs

Column 3 of A197054.

Formula

Empirical: a(n) = a(n-1) +a(n-2) +3*a(n-3) -a(n-4) -a(n-5) for n>6.
Equivalent g.f.: -(2*x^6-x^5+x^4-x^3-x^2-x-1)/(x^5+x^4-3*x^3-x^2-x+1). - R. J. Mathar, Oct 10 2011
Spahn (see link) provides a proof of the generating function. - Hugo Pfoertner, Apr 18 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Apr 18 2024

A332347 Array read by antidiagonals: T(m,n) is the number of maximal independent sets in the m X n king graph.

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 3, 6, 6, 3, 4, 12, 8, 12, 4, 5, 20, 22, 22, 20, 5, 7, 36, 40, 79, 40, 36, 7, 9, 64, 82, 194, 194, 82, 64, 9, 12, 112, 176, 537, 544, 537, 176, 112, 12, 16, 200, 340, 1519, 1882, 1882, 1519, 340, 200, 16, 21, 352, 722, 4011, 6490, 8197, 6490, 4011, 722, 352, 21
Offset: 1

Views

Author

Andrew Howroyd, Feb 10 2020

Keywords

Comments

Also the number of minimal vertex covers in the m X n king graph.

Examples

			Array begins:
=====================================================
m\n | 1   2   3    4     5      6       7       8
----+------------------------------------------------
  1 | 1   2   2    3     4      5       7       9 ...
  2 | 2   4   6   12    20     36      64     112 ...
  3 | 2   6   8   22    40     82     176     340 ...
  4 | 3  12  22   79   194    537    1519    4011 ...
  5 | 4  20  40  194   544   1882    6490   20534 ...
  6 | 5  36  82  537  1882   8197   36301  144409 ...
  7 | 7  64 176 1519  6490  36301  201611 1009321 ...
  8 | 9 112 340 4011 20534 144409 1009321 6214593 ...
  ...
		

Crossrefs

Rows 1..4 are A000931(n+6), A107383(n+2), A332348, A332349.
Main diagonal is A288956.
Cf. A197054 (grid graph), A218663 (dominating sets), A245013 (independent sets), A286849 (minimal dominating sets).

Formula

T(n,m) = T(m,n).

A197048 Number of n X n 0..4 arrays with each element equal to the number of its horizontal and vertical zero neighbors.

Original entry on oeis.org

1, 2, 10, 42, 358, 4468, 88056, 2745186, 134355866, 10264692132, 1234801357470, 232966546265096, 68939282741912248
Offset: 1

Views

Author

R. H. Hardin, Oct 09 2011

Keywords

Comments

Every 0 is next to 0 0's, every 1 is next to 1 0's, every 2 is next to 2 0's, every 3 is next to 3 0's, every 4 is next to 4 0's.
Also, the number of maximal independent vertex sets in the grid graph P_n X P_n. - Andrew Howroyd, May 16 2017

Examples

			Some solutions for n=4
..0..2..0..2....2..0..1..1....2..0..3..0....0..3..0..2....1..0..3..0
..1..1..2..0....0..3..1..0....0..4..0..2....3..0..3..0....1..2..0..3
..2..0..2..1....3..0..2..1....3..0..2..1....0..2..1..1....0..1..3..0
..0..3..0..1....0..3..0..1....0..2..1..0....1..1..0..1....1..1..0..2
		

Crossrefs

Diagonal of A197054.
Cf. A006506 (independent vertex sets), A133515 (dominating sets).

Programs

A197050 Number of nX4 0..4 arrays with each element equal to the number its horizontal and vertical zero neighbors.

Original entry on oeis.org

3, 6, 18, 42, 108, 274, 692, 1754, 4442, 11248, 28488, 72146, 182712, 462728, 1171876, 2967826, 7516146, 19034954, 48206826, 122085820, 309187486, 783030352, 1983057390, 5022176478, 12718873752, 32211084212, 81575929322, 206594481604
Offset: 1

Views

Author

R. H. Hardin, Oct 09 2011

Keywords

Comments

Every 0 is next to 0 0's, every 1 is next to 1 0's, every 2 is next to 2 0's, every 3 is next to 3 0's, every 4 is next to 4 0's.
Column 4 of A197054.

Examples

			Some solutions for n=5
..0..2..1..0....2..0..3..0....0..3..0..2....2..0..3..0....0..3..0..1
..3..0..2..1....0..4..0..3....3..0..4..0....0..4..0..3....2..0..2..1
..0..4..0..2....2..0..4..0....0..4..0..2....3..0..3..0....1..1..2..0
..3..0..4..0....1..2..0..3....3..0..2..1....0..2..1..1....0..3..0..3
..0..3..0..2....0..1..2..0....0..2..1..0....1..1..0..1....2..0..3..0
		

Formula

Empirical: a(n) = a(n-1) +3*a(n-2) +3*a(n-3) -a(n-4) -2*a(n-5) -a(n-6) for n>7.
Equivalent empirical g.f.: 3*x - 2*x^2*(1+x)*(x^4+3*x^3-3*x-3) / ( 1-x-3*x^2-3*x^3+x^4+2*x^5+x^6 ). - R. J. Mathar, Oct 10 2011

A197051 Number of nX5 0..4 arrays with each element equal to the number its horizontal and vertical zero neighbors.

Original entry on oeis.org

4, 10, 38, 108, 358, 1132, 3580, 11382, 36270, 114992, 365628, 1162290, 3692624, 11733828, 37293892, 118504546, 376583590, 1196750110, 3803034578, 12085297922, 38405269512, 122045123484, 387837623386, 1232482503260, 3916616317912
Offset: 1

Views

Author

R. H. Hardin, Oct 09 2011

Keywords

Comments

Every 0 is next to 0 0's, every 1 is next to 1 0's, every 2 is next to 2 0's, every 3 is next to 3 0's, every 4 is next to 4 0's.
Column 5 of A197054.

Examples

			Some solutions for n=4
..0..1..2..0..2....1..1..0..3..0....0..3..0..3..0....0..2..1..0..2
..2..1..0..4..0....0..2..2..0..3....3..0..3..0..2....2..0..2..2..0
..0..1..3..0..3....3..0..2..2..0....0..2..1..1..1....1..2..0..2..1
..1..1..0..3..0....0..3..0..1..1....1..1..0..2..0....0..1..2..0..1
		

Formula

Empirical: a(n) = a(n-1) +4*a(n-2) +10*a(n-3) +4*a(n-4) -20*a(n-5) +a(n-6) -2*a(n-7) +2*a(n-8) -16*a(n-9) +4*a(n-10) +a(n-13) for n>14.
Equivalent empirical g.f.: 4*x - 2*x^2*(5+14*x+15*x^2-x^3-39*x^4-8*x^5+6*x^6-21*x^7-13*x^8-x^9+x^10+3*x^11+3*x^12) / ( -1+x+4*x^2+10*x^3+4*x^4-20*x^5+x^6-2*x^7+2*x^8-16*x^9+4*x^10+x^13 ). - R. J. Mathar, Oct 10 2011

A197052 Number of nX6 0..4 arrays with each element equal to the number its horizontal and vertical zero neighbors.

Original entry on oeis.org

5, 16, 78, 274, 1132, 4468, 17742, 70616, 281202, 1117442, 4448148, 17693664, 70390082, 280040518, 1114106280, 4432207738, 17633023628, 70149839190, 279079644000, 1110273409628, 4417041071578, 17572471614384, 69909222737482
Offset: 1

Views

Author

R. H. Hardin Oct 09 2011

Keywords

Comments

Every 0 is next to 0 0's, every 1 is next to 1 0's, every 2 is next to 2 0's, every 3 is next to 3 0's, every 4 is next to 4 0's
Column 6 of A197054

Examples

			Some solutions for n=4
..0..3..0..2..0..2....0..3..0..2..1..0....2..0..3..0..3..0....0..2..0..3..0..1
..2..0..2..1..2..0....2..0..4..0..2..1....0..4..0..3..0..3....1..1..2..0..2..1
..1..1..2..0..1..2....1..2..0..4..0..2....3..0..2..1..2..0....2..0..2..1..2..0
..0..2..0..2..1..0....0..1..2..0..3..0....0..2..1..0..1..1....0..3..0..2..0..2
		

Formula

Empirical: a(n) = 2*a(n-1) +7*a(n-2) +9*a(n-3) -15*a(n-4) -38*a(n-5) +45*a(n-6) -16*a(n-7) -91*a(n-9) +117*a(n-10) -63*a(n-11) +52*a(n-12) -19*a(n-13) +5*a(n-14) +8*a(n-15) -10*a(n-16) +4*a(n-17) -4*a(n-18) for n>19

A231884 Number of maximal 2-independent sets in the 3-dimensional (2, 2, n) grid graph.

Original entry on oeis.org

0, 4, 4, 20, 32, 80, 180, 408, 940, 2072, 4824, 10792, 24660, 55748, 126760, 287584, 652280, 1481184, 3359900, 7627296, 17305472, 39277688, 89131928, 202276640, 459045772, 1041743020, 2364140452, 5365103100, 12175556108, 27630957644, 62705400664, 142302685268
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0}, LinearRecurrence[{0, 3, 4, 4, 0, -9, -3}, {4, 4, 20, 32, 80, 180, 408}, 31]] (* Jean-François Alcover, Nov 01 2017 *)
  • PARI
    concat(0, Vec(4*x*(1 + x)*(1 + 2*x^2 - x^3 - 2*x^4 - x^5) / (1 - 3*x^2 - 4*x^3 - 4*x^4 + 9*x^6 + 3*x^7) + O(x^40))) \\ Colin Barker, Oct 04 2017

Formula

Euler et al. give an explicit g.f. and recurrence.
From Colin Barker, Oct 04 2017: (Start)
G.f.: 4*x*(1 + x)*(1 + 2*x^2 - x^3 - 2*x^4 - x^5) / (1 - 3*x^2 - 4*x^3 - 4*x^4 + 9*x^6 + 3*x^7).
a(n) = 3*a(n-2) + 4*a(n-3) + 4*a(n-4) - 9*a(n-6) - 3*a(n-7) for n>7.
(End)

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jun 10 2017

A231887 Number of maximal 2-independent sets in the 3-dimensional (3, 3, n) grid graph.

Original entry on oeis.org

0, 11, 46, 182, 1026, 4836, 23922, 118674, 584516, 2889306, 14266546, 70455052, 347980122, 1718525298, 8487343508, 41916544250, 207013446378, 1022380190332, 5049238367202, 24936725579450, 123155267567884, 608228181611074, 3003862808227186, 14835208208589988
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2013

Keywords

Crossrefs

Extensions

Terms a(13) and beyond from Andrew Howroyd, Jun 10 2017
Showing 1-10 of 14 results. Next