A197110 Decimal expansion of Pi^4/120.
8, 1, 1, 7, 4, 2, 4, 2, 5, 2, 8, 3, 3, 5, 3, 6, 4, 3, 6, 3, 7, 0, 0, 2, 7, 7, 2, 4, 0, 5, 8, 7, 5, 9, 2, 7, 0, 8, 1, 0, 6, 3, 2, 1, 3, 9, 3, 9, 0, 4, 5, 1, 8, 0, 7, 6, 2, 2, 3, 2, 1, 6, 1, 5, 8, 3, 0, 9, 0, 4, 6, 2, 1, 4, 0, 2, 2, 6, 6, 3, 4, 9, 1, 7, 6, 8, 2
Offset: 0
Examples
0.8117424... = A164109/40 .
Links
- R. E. Crandall and J. P. Buhler, On the evaluation of Euler sums, Exper. Math. 3 (1994), 275.
- Wikipedia, Multiple zeta function
- Index entries for transcendental numbers
Programs
-
Maple
evalf(Pi^4/120) ;
-
Mathematica
First[RealDigits[Pi^4/120,10,100]] (* Geoffrey Critzer, Nov 03 2013 *)
-
PARI
Pi^4/120 \\ Charles R Greathouse IV, Apr 17 2015
-
PARI
zetamult([2,2]) \\ Charles R Greathouse IV, Apr 17 2015
Formula
Equals Sum_{n >=2} Sum_{m=1..n-1} 1/(n*m)^2.
Extensions
More terms from D. S. McNeil, Oct 10 2011
Definition simplified by R. J. Mathar, Feb 05 2013
Comments