cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197130 Sum of reflection (or absolute) lengths of all elements in the Coxeter group of type B_n.

Original entry on oeis.org

1, 10, 100, 1136, 14816, 220032, 3679488, 68548608, 1409347584, 31717048320, 775808778240, 20499651624960, 582040706088960, 17674457139118080, 571655258741145600, 19621314364126003200, 712374154997583052800, 27277192770051951820800
Offset: 1

Views

Author

Cathy Kriloff, Oct 10 2011

Keywords

Examples

			a(2)=10 since W(B_2)={1, t_1=s_1, t_2=s_2, t_3=s_1*s_2*s_1, t_4=s_2*s_1*s_2, t_1*t_2=s_1*s_2, t_2*t_1=s_2*s_1, t_1*t_4=s_1*s_2*s_1*s_2} in terms of simple reflections s_1 and s_2.
		

References

  • P. Renteln, The distance spectra of Cayley graphs of Coxeter groups, Discrete Math., 311 (2011), 738-755.

Crossrefs

Programs

  • Maple
    seq(2^n*factorial(n)*add((2*k-1)/(2*k),k=1..n),n=1..100);
  • Mathematica
    Table[2^n*Factorial[n]*Sum[(2*k-1)/(2*k),{k,1,n}],{n,1,100}]
  • Sage
    [2^n*factorial(n)*sum([(2*k-1)/(2*k) for k in [1..n]]) for n in [1..100]]

Formula

a(n)=Sum_{w in W(B_n)} l_T(w)=|W(B_n)|Sum_{i=1}^n (d_i-1)/d_i=2^n*n!*(1/2+3/4+...+(2n-1)/(2n)) where T=all reflections in W(B_n), l_T(1)=0 and otherwise l_T(w)=min{k|w=t_1*...*t_k for t_i in T}, and d_1,...,d_n are the degrees of W(B_n)