cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197208 Triangular array: T(n,k) = sqrt(C(n-1,k-1)*C(n-1,k)*C(n,k+1)* C(n+1,k+1)*C(n+1,k)*C(n,k-1)), where C(n,k) = binomial(n,k).

Original entry on oeis.org

3, 12, 12, 30, 120, 30, 60, 600, 600, 60, 105, 2100, 5250, 2100, 105, 168, 5880, 29400, 29400, 5880, 168, 252, 14112, 123480, 246960, 123480, 14112, 252, 360, 30240, 423360, 1481760, 1481760, 423360, 30240, 360, 495, 59400, 1247400, 6985440, 12224520, 6985440, 1247400, 59400, 495
Offset: 2

Views

Author

Peter Bala, Oct 12 2011

Keywords

Comments

In Pascal's triangle, the product of the six entries surrounding C(n,k) is a perfect square.
.............................................
..............C(n-1,k-1)____C(n-1,k).........
.............../.................\...........
............C(n,k-1)...C(n,k)....C(n,k+1)....
...............\................./...........
..............C(n+1,k)______C(n+1,k+1).......
.............................................
In fact, C(n-1,k-1)*C(n,k+1)*C(n+1,k) = C(n-1,k)*C(n+1,k+1)*C(n,k-1).

Examples

			.n\k.|....1......2......3......4......5......6
= = = = = = = = = = = = = = = = = = = = = = = =
..2..|....3...
..3..|...12.....12
..4..|...30....120.....30
..5..|...60....600....600.....60
..6..|..105...2100...5250...2100....105
..7..|..168...5880..29400..29400...5880....168
...
T(4,3) = sqrt(1*3*6*10*5*1) = sqrt(900) = 30
..............1..............
............1...1............
..........1...2...1..........
........1...3...3____1.......
.............../......\......
......1...4...6...4....1.....
...............\....../......
...1...5...10...10___5.....1.
		

Crossrefs

Cf. A007318, A056939, A197209 (row sums).

Formula

T(n,k) = sqrt(C(n-1,k-1)*C(n-1,k)*C(n,k+1)*C(n+1,k+1)*C(n+1,k)* C(n,k-1)).
T(n,k) = C(n-1,k-1)*C(n,k+1)*C(n+1,k) = C(n-1,k)*C(n+1,k+1)*C(n,k-1).
T(n,k) = 1/2*(n^3-n)*A056939(n-2,k-1), for n >= 2 and 1 <= k <= n-1.
Row sums are A197209.