Original entry on oeis.org
3, 24, 180, 1320, 9660, 70896, 522648, 3871440, 28809990, 215318400, 1615579680, 12165491520, 91905439080, 696359055840, 5290416835440, 40291036122528, 307537305284574, 2352216447006480, 18024996856976760
Offset: 2
-
Table[Sum[Binomial[n-1,k-1]Binomial[n,k+1]Binomial[n+1,k],{k,n-1}],{n,2,20}] (* Harvey P. Dale, May 08 2016 *)
-
a(n) = sum(k=1, n-1, binomial(n-1,k-1)*binomial(n,k+1)*binomial(n+1,k)); \\ Michel Marcus, Jan 09 2021
A056939
Array read by antidiagonals: number of antichains (or order ideals) in the poset 3*m*n or plane partitions with rows <= m, columns <= n and entries <= 3.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 20, 50, 20, 1, 1, 35, 175, 175, 35, 1, 1, 56, 490, 980, 490, 56, 1, 1, 84, 1176, 4116, 4116, 1176, 84, 1, 1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1, 1, 165, 4950, 41580, 116424, 116424, 41580, 4950, 165, 1
Offset: 0
The initial rows of the array are:
1 1 1 1 1 1 ...
1 4 10 20 35 56 ...
1 10 50 175 490 1176 ...
1 20 175 980 4116 14112 ...
1 35 490 4116 24696 116424 ...
1 56 1176 14112 116424 731808 ...
...
Considered as a triangle, the initial rows are:
[1],
[1, 1],
[1, 4, 1],
[1, 10, 10, 1],
[1, 20, 50, 20, 1],
[1, 35, 175, 175, 35, 1],
[1, 56, 490, 980, 490, 56, 1],
[1, 84, 1176, 4116, 4116, 1176, 84, 1],
[1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1],
[1, 165, 4950, 41580, 116424, 116424, 41580, 4950, 165, 1],
[1, 220, 9075, 108900, 457380, 731808, 457380, 108900, 9075, 220, 1]
...
- Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124
- R. P. Stanley, Theory and application of plane partitions. II. Studies in Appl. Math. 50 (1971), p. 259-279. Thm. 18.1
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
- Johann Cigler, Some observations about Hankel determinants of the columns of Pascal triangle and related topics, arXiv:2202.07298 [math.CO], 2022.
- Stefan Felsner, Eric Fusy, Marc Noy, and David Orden, Bijections for Baxter families and related objects, J. Combin. Theory Ser. A, 118(3):993-1020, 2011.
- V. E. Hoggatt, Jr., Letter to N. J. A. Sloane, Apr 1977
- P. A. MacMahon, Combinatory analysis, section 495, 1916.
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1..12:
A007318 (Pascal),
A001263,
A056939,
A056940,
A056941,
A142465,
A142467,
A142468,
A174109,
A342889,
A342890,
A342891.
-
# To get initial terms of the array - N. J. A. Sloane, Apr 20 2021
bb := (k,l) -> binomial(k+l,k)*binomial(k+l+1,k)*binomial(k+l+2,k)*2/((k+1)^2*(k+2));
for k from 0 to 8 do
lprint([seq(bb(k,l),l=0..8)]);
od:
-
t[n_, m_] = 2*Binomial[n, m]*Binomial[n + 1, m + 1]* Binomial[n + 2, m + 2]/((n - m + 1)^2*(n - m + 2)); Flatten[Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]] (* Roger L. Bagula, Jan 28 2009 *)
-
\\ cf. A359363
C=binomial;
T(n,k)=if(n==0&&k==0,1,(C(n+1,k-1)*C(n+1,k)*C(n+1,k+1))/(C(n+1,1)*C(n+1,2)));
for(n=1,10,for(k=1,n,print1(T(n,k),", "));print()); \\ Joerg Arndt, Jan 04 2024
Showing 1-2 of 2 results.
Comments