cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A197218 a(n) = phi(Lucas(n)).

Original entry on oeis.org

1, 1, 2, 2, 6, 10, 6, 28, 46, 36, 80, 198, 132, 520, 560, 600, 2206, 3570, 1908, 9348, 12960, 11760, 25704, 63480, 50692, 150000, 180960, 208008, 609084, 1130304, 604800, 3010348, 4865280, 3920400, 8374344, 17836000, 13685760, 54018520, 58269200, 69600960
Offset: 0

Views

Author

T. D. Noe, Oct 12 2011

Keywords

Crossrefs

Cf. A000010, A000032, A065449, A065451, A197219 (Lucas(phi(n))).

Programs

  • Magma
    [EulerPhi(Lucas(n)): n in [0..40]]; // Vincenzo Librandi, Oct 13 2011
    
  • Mathematica
    Table[EulerPhi[LucasL[n]], {n, 0, 40}]
  • PARI
    for(n=0,30, print1(eulerphi(fibonacci(n+1) + fibonacci(n-1)), ", ")) \\ G. C. Greubel, Dec 22 2017

Formula

a(n) = A000010(A000032(n)).

A197190 a(0) = 2, a(n) = Lucas(phi(n^2)) for n > 0.

Original entry on oeis.org

2, 1, 3, 18, 47, 15127, 322, 599074578, 4870847, 192900153618, 228826127, 97418273275323406890123, 10749957122, 400010949097364802732720796316482, 358890350005878082, 11981655542024930675232002, 562882766124611619513723647, 699259133978938420550028971714417160188479526095241271647
Offset: 0

Views

Author

Vincenzo Librandi, Oct 13 2011

Keywords

Crossrefs

Programs

  • Magma
    [2] cat [Lucas(EulerPhi(n^2)): n in [1..20]];

Formula

a(n) = A000032(A002618(n)) for n > 0.

A197191 a(n) = phi(Lucas(n^2)).

Original entry on oeis.org

1, 1, 6, 36, 2206, 150000, 13685760, 16794009904, 23538338288640, 40111742758242240, 678603619866009600000, 19289305175281390070751204, 619856418580365858926902640640, 208006459829483370218035382709089280, 78451383926677134672195807581733722937984
Offset: 0

Views

Author

Vincenzo Librandi, Oct 13 2011

Keywords

Crossrefs

Programs

  • Magma
    [EulerPhi(Lucas(n^2)): n in [0..15]]
  • Mathematica
    Table[EulerPhi[LucasL[n^2]], {n, 0, 15}] (* Vincenzo Librandi, Oct 04 2013 *)
Showing 1-3 of 3 results.