A197272 a(n) = 6/((4*n+1)*(4*n+2))*binomial(5*n,n).
3, 1, 3, 15, 95, 690, 5481, 46376, 411255, 3781635, 35791910, 346821930, 3427001253, 34425730640, 350732771160, 3617153918640, 37703805776935, 396716804816265, 4209161209968825, 44993046668984145, 484176486362971710
Offset: 0
Links
- G. Schaeffer, A combinatorial interpretation of super-Catalan numbers of order two (2001).
- G. Thorlieffson, P. Bialis, B. Petersson, The weak-coupling limit of simplicial quantum gravity, Nuclear Physics B, Volume 550, Issues 1-2, 14 June 1999, Pages 465-491.
Programs
-
Maple
A197272 := proc(n) 6/((4*n+1)*(4*n+2))*binomial(5*n,n) end proc: seq(A197272(n),n=0..40) ; # R. J. Mathar, Mar 29 2023
-
Mathematica
Table[6/((4n+1)(4n+2)) Binomial[5n,n],{n,0,20}] (* Harvey P. Dale, Aug 08 2013 *)
Formula
a(n) = 6/((4*n+1)*(4*n+2))*binomial(5*n,n).
D-finite with recurrence 8*n*(4*n+1)*(2*n+1)*(4*n-1)*a(n) -5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Mar 29 2023
Comments