cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197657 Row sums of A194595.

Original entry on oeis.org

1, 4, 22, 134, 866, 5812, 40048, 281374, 2006698, 14482064, 105527060, 775113440, 5731756720, 42628923040, 318621793472, 2391808860446, 18023208400634, 136271601087352, 1033449449559724, 7858699302115444, 59906766929537116, 457685157123172664
Offset: 0

Views

Author

Susanne Wienand, Oct 17 2011

Keywords

Comments

Number of meanders of length (n+1)*3 which are composed by arcs of equal length and a central angle of 120 degrees.
Definition of a meander:
A binary curve C is a triple (m, S, dir) such that
(a) S is a list with values in {L,R} which starts with an L,
(b) dir is a list of m different values, each value of S being allocated a value of dir,
(c) consecutive Ls increment the index of dir,
(d) consecutive Rs decrement the index of dir,
(e) the integer m>0 divides the length of S and
(f) C is a meander if each value of dir occurs length(S)/m times.
For this sequence, m = 3.
For 0 <= n <= 16, a(n) = the hypergraph Fuss-Catalan number FC_1^(2,n+1) in the notation of Chavan et al. - see 7.1 in the Appendix. - Peter Bala, Apr 11 2023

Examples

			Some examples of list S and allocated values of dir if n = 4:
Length(S) = (4+1)*3 = 15.
  S: L,L,L,L,L,L,L,L,L,L,L,L,L,L,L
dir: 1,2,0,1,2,0,1,2,0,1,2,0,1,2,0
  S: L,L,L,L,R,L,L,R,L,L,R,L,L,L,L
dir: 1,2,0,1,1,1,2,2,2,0,0,0,1,2,0
  S: L,R,L,L,L,L,L,R,L,L,R,L,R,R,R
dir: 1,1,1,2,0,1,2,2,2,0,0,0,0,2,1
Each value of dir occurs 15/3 = 5 times.
		

Crossrefs

Programs

  • Maple
    A197657 := proc(n)
        (A000172(n) + A000172(n+1)) / 3 ;
    end proc; # R. J. Mathar, Jul 26 2014
    a := n -> 2^n*hypergeom([n + 1, -n/2, -n/2 - 1/2], [1, 1], 1):
    seq(simplify(a(n)), n = 0..21); # Peter Luschny, Mar 26 2023
  • Mathematica
    A197657[n_] := Sum[Sum[Sum[(-1)^(j + i)* Binomial[i, j]*Binomial[n, k]^3*(n + 1)^j*(k + 1)^(2 - j)/(k + 1)^2, {i, 0, 2}], {j, 0, 2}], {k, 0, n}]; Table[A197657[n], {n, 0, 16}]  (* Peter Luschny, Nov 02 2011 *)
  • PARI
    A197657(n) = {sum(k=0,n,if(n == 1+2*k,3,(1+k)*(1-((n-k)/(1+k))^3)/(1+2*k-n))*binomial(n,k)^3)} \\ Peter Luschny, Nov 24 2011
  • SageMath
    def A197657(n):
        return 2^n*hypergeometric([n + 1, -n/2, -n/2 - 1/2], [1, 1], 1).simplify_hypergeometric()
    for n in (0..21): print(A197657(n)) # Peter Luschny, Mar 26 2023
    

Formula

a(n) = Sum{k=0..n} Sum{j=0..2} Sum{i=0..2} (-1)^(j+i)*C(i,j)*C(n,k)^3*(n+1)^j*(k+1)^(2-j)/(k+1)^2. - Peter Luschny, Nov 02 2011
a(n) = Sum_{k=0..n} h(n,k)*binomial(n,k)^3, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^3)/(1+2*k-n) if 1+2*k-n <> 0 else h(n,k) = 3. - Peter Luschny, Nov 24 2011
a(n) = A141147(n+1)/2 = A110707(n+1)/6 = (A000172(n)+A000172(n+1))/3. - Max Alekseyev, Jul 15 2014
Conjecture: (n+1)^2*a(n) -3*(n+1)*(2*n+1)*a(n-1) -3*n*(5*n-7)*a(n-2) -8*(n-2)^2*a(n-3)=0. - R. J. Mathar, Jul 26 2014
a(n) = 2^n*hypergeom([n + 1, -n/2, -n/2 - 1/2], [1, 1], 1). - Peter Luschny, Mar 26 2023
a(n) ~ sqrt(3) * 2^(3*n+1) / (Pi*n). - Vaclav Kotesovec, Apr 17 2023