cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A197604 a(n) = floor((n+1/n)^5).

Original entry on oeis.org

32, 97, 411, 1386, 3802, 8917, 18593, 35409, 62785, 105101, 167816, 257592, 382408, 551684, 776400, 1069216, 1444592, 1918908, 2510584, 3240200, 4130616, 5207092, 6497408, 8031984, 9844000, 11969516, 14447592, 17320408, 20633384, 24435300, 28778416, 33718592, 39315408, 45632284, 52736600, 60699816, 69597592, 79509908
Offset: 1

Views

Author

Vincenzo Librandi, Oct 17 2011

Keywords

Crossrefs

Cf. A014052.

Programs

  • Magma
    [Floor((n+1/n)^5): n in [1..60]]
    
  • Mathematica
    Join[{32,97,411,1386,3802,8917,18593,35409,62785,105101},LinearRecurrence[{6,-15,20,-15,6,-1},{167816,257592,382408,551684,776400,1069216},30]] (* Harvey P. Dale, Jan 16 2015 *)
  • PARI
    a(n)=floor((n+1/n)^5) \\ Charles R Greathouse IV, Oct 27 2011

Formula

From Bruno Berselli, Oct 27 2011: (Start)
G.f.: x*(32-95*x+309*x^2-265*x^3+191*x^4-62*x^5+16*x^6-13*x^7+11*x^8-5*x^9+5*x^11-10*x^12+10*x^13-5*x^14+x^15)/(1-x)^6.
a(n) = n*(n^4+5*n^2+10) + A033330(n) for n>1.
a(n) = A197904(n) - 1 for n>1. (End)

A198070 a(n) = round((n+1/n)^5).

Original entry on oeis.org

32, 98, 412, 1387, 3802, 8918, 18593, 35409, 62785, 105101, 167817, 257593, 382409, 551685, 776401, 1069217, 1444593, 1918909, 2510585, 3240201, 4130616, 5207092, 6497408, 8031984, 9844000, 11969516, 14447592, 17320408
Offset: 1

Views

Author

Vincenzo Librandi, Oct 21 2011

Keywords

Crossrefs

Programs

Formula

a(n) = n*(n^4+5*n^2+10) = A197904(n)-1 for n>20. - Bruno Berselli, Oct 27 2011
Showing 1-2 of 2 results.