cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198046 Exponential transform of A053549.

Original entry on oeis.org

1, 1, 3, 19, 225, 4841, 192355, 14537643, 2135997537, 616565334097, 351243585487331, 395958973398105283, 885030941975862363649, 3928075680727698371316537, 34658158001445631936261356547, 608435501761943981290097259909211
Offset: 0

Views

Author

Geoffrey Critzer, Oct 20 2011

Keywords

Comments

a(n) is the number of ways to designate a node in each connected component over all simple labeled graphs on n nodes.

Crossrefs

Cf. A053549.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
          add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*g(k), k=1..n-1)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1) *j*g(j) *a(n-j), j=1..n))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 17 2015
  • Mathematica
    nn=20; a=Sum[2^Binomial[n,2]x^n/n!,{n,0,nn}]; Range[0,nn]! CoefficientList[Series[Exp[x D[Log[a],x]], {x,0,nn}], x]
  • PARI
    seq(n)={Vec(serlaplace(exp(x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))))))} \\ Andrew Howroyd, Jun 18 2018

Formula

E.g.f.: exp(A(x)) where A(x) is the e.g.f. for A053549.

Extensions

a(6), a(10) corrected by Alois P. Heinz, Mar 18 2015