cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198069 Table read by rows, T(0,0) = 1 and for n>0, 0<=k<=2^(n-1) T(n,k) = gcd(k,2^(n-1)).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 4, 1, 2, 1, 4, 8, 1, 2, 1, 4, 1, 2, 1, 8, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 32, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, 64, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2
Offset: 0

Views

Author

Peter Luschny, Nov 12 2011

Keywords

Examples

			                         1
                        1, 1
                      2, 1, 2
                   4, 1, 2, 1, 4
             8, 1, 2, 1, 4, 1, 2, 1, 8
16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16
		

Crossrefs

Cf. A094373 (row lengths), A045623 (row sums), A011782 (edges and central terms).

Programs

  • Haskell
    a198069 n k = a198069_tabf !! n !! k
    a198069_row n = a198069_tabf !! n
    a198069_tabf = [0] : iterate f [1, 1] where
       f (x:xs) = ys ++ tail (reverse ys) where ys = (2 * x) : xs
    -- Reinhard Zumkeller, May 26 2013
  • Maple
    # In triangular form:
    seq(print(seq(gcd(k,2^(n-1)),k=0..2^(n-1))),n=0..6);
  • Mathematica
    Join[{1},Flatten[Table[GCD[k,2^(n-1)],{n,10},{k,0,2^(n-1)}]]] (* Harvey P. Dale, Oct 30 2021 *)

Formula

For n > 0: Let S be the n-th row, S' = replace the initial term by its double, then row (n+1) = concatenation of S' and the reverse of S' without the initial term. - Reinhard Zumkeller, May 26 2013