A198259 a(n) = Sum_{k=1..n} F(n mod k) where F = A000045, the Fibonacci numbers.
0, 0, 1, 1, 3, 2, 6, 5, 9, 9, 17, 13, 26, 26, 39, 39, 66, 61, 104, 102, 156, 162, 265, 249, 405, 419, 646, 652, 1059, 1031, 1676, 1696, 2660, 2705, 4362, 4283, 6937, 7039, 11159, 11206, 18138, 17998, 29130, 29325, 46805, 47075, 76171, 75713, 122502, 123123
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Benoit Cloitre, An asymptotic formula for sum_{k=1..n}x^(n modk) [broken link]
Programs
-
Haskell
a198259 n = sum $ map (a000045 . (mod n)) [1..n] -- Reinhard Zumkeller, Oct 22 2011
-
Mathematica
a[n_] := Sum[Fibonacci[Mod[n, k]], {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 24 2025 *)
Formula
a(n) is asymptotic to (1/10)*(5+sqrt(5))*phi^ceiling(n/2) where phi = (1+sqrt(5))/2.