A198303 Irregular triangle C(n,g) counting connected trivalent simple graphs on 2n vertices with girth exactly g.
1, 1, 1, 3, 2, 13, 5, 1, 63, 20, 2, 399, 101, 8, 1, 3268, 743, 48, 1, 33496, 7350, 450, 5, 412943, 91763, 5751, 32, 5883727, 1344782, 90553, 385, 94159721, 22160335, 1612905, 7573, 1, 1661723296, 401278984, 31297357, 181224, 3, 31954666517
Offset: 2
Examples
1; 1, 1; 3, 2; 13, 5, 1; 63, 20, 2; 399, 101, 8, 1; 3268, 743, 48, 1; 33496, 7350, 450, 5; 412943, 91763, 5751, 32; 5883727, 1344782, 90553, 385; 94159721, 22160335, 1612905, 7573, 1; 1661723296, 401278984, 31297357, 181224, 3; 31954666517, 7885687604, 652159389, 4624480, 21; 663988090257, 166870266608, 14499780660, 122089998, 545; 14814445040728, 3781101495300, 342646718608, 3328899586, 30368;
Links
- F. C. Bussemaker, S. Cobeljic, L. M. Cvetkovic and J. J. Seidel, Computer investigations of cubic graphs, T.H.-Report 76-WSK-01, Technological University Eindhoven, Dept. Mathematics, 1976.
- Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth exactly g
Crossrefs
The sum of the n-th row of this sequence is A002851(n).
Connected 3-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7).
Comments