cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198306 Moore lower bound on the order of a (6,g)-cage.

Original entry on oeis.org

7, 12, 37, 62, 187, 312, 937, 1562, 4687, 7812, 23437, 39062, 117187, 195312, 585937, 976562, 2929687, 4882812, 14648437, 24414062, 73242187, 122070312, 366210937, 610351562, 1831054687, 3051757812, 9155273437, 15258789062
Offset: 3

Views

Author

Jason Kimberley, Oct 30 2011

Keywords

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), this sequence (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7).

Programs

  • Mathematica
    LinearRecurrence[{1,5,-5},{7,12,37},30] (* Harvey P. Dale, Jun 28 2015 *)

Formula

a(2*i) = 2*Sum_{j=0..i-1} 5^j = string "2"^i read in base 5.
a(2*i+1) = 5^i + 2*Sum_{j=0..i-1} 5^j = string "1"*"2"^i read in base 5.
a(n) <= A218554(n). - Jason Kimberley, Dec 21 2012
a(n) = a(n-1)+5*a(n-2)-5*a(n-3). G.f.: -x^3*(10*x^2-5*x-7) / ((x-1)*(5*x^2-1)). - Colin Barker, Feb 01 2013
From Colin Barker, Nov 25 2016: (Start)
a(n) = (5^(n/2) - 1)/2 for n>2 and even.
a(n) = (3*5^((n-1)/2) - 1)/2 for n>2 and odd. (End)
E.g.f.: (5*cosh(sqrt(5)*x) - 5*cosh(x) - 5*sinh(x) + 3*sqrt(5)*sinh(sqrt(5)*x) - 10*x*(1 + x))/10. - Stefano Spezia, Apr 07 2022