A198441 Square root of third term of a triple of squares in arithmetic progression that is not a multiple of another triple in (A198384, A198385, A198386).
7, 17, 23, 31, 41, 47, 49, 71, 73, 79, 89, 97, 103, 113, 119, 119, 127, 137, 151, 161, 161, 167, 191, 193, 199, 217, 217, 223, 233, 239, 241, 257, 263, 271, 281, 287, 287, 289, 311, 313, 329, 329, 337, 343, 353, 359, 367, 383, 391, 391, 401, 409, 431, 433
Offset: 1
Keywords
Examples
Primitive Pythagorean triangle connection: a(1) = 7 because (u,v,w) = (1,5,7) corresponds to the primitive Pythagorean triangle (x = (w-u)/2, y = (w+u)/2, z = v) = (3,4,5) with leg sum 3 + 4 = 7. - _Wolfdieter Lang_, May 23 2013
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- Keith Conrad, Arithmetic progressions of three squares
- Reinhard Zumkeller, Table of initial values
Crossrefs
Programs
-
Haskell
a198441 n = a198441_list !! (n-1) a198441_list = map a198390 a198409_list
-
Mathematica
wmax = 1000; triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]]; tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2]; DeleteCases[tt, t_List /; GCD@@t > 1 && MemberQ[tt, t/GCD@@t]][[All, 3]] (* Jean-François Alcover, Oct 22 2021 *)
Comments