cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198441 Square root of third term of a triple of squares in arithmetic progression that is not a multiple of another triple in (A198384, A198385, A198386).

Original entry on oeis.org

7, 17, 23, 31, 41, 47, 49, 71, 73, 79, 89, 97, 103, 113, 119, 119, 127, 137, 151, 161, 161, 167, 191, 193, 199, 217, 217, 223, 233, 239, 241, 257, 263, 271, 281, 287, 287, 289, 311, 313, 329, 329, 337, 343, 353, 359, 367, 383, 391, 391, 401, 409, 431, 433
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Comments

This sequence gives the sum of the two legs (catheti) x + y of primitive Pythagorean triangles (x,y,z) with y even and gcd(x,y) = 1, ordered nondecreasingly (with multiple entries). See A058529(n), n>=2, for the sequence without multiple entries. For the proof, put in the Zumkeller link w = x + y, v = z and u = abs(x - y). This works because w^2 - v^2 = v^2 - u^2, hence u^2 = 2*v^2 - w^2 = 2*z^2 - (x+y)^2 = 2*(x^2 + y^2) - (x+y)^2 = x^2 + y^2 - 2*x*y = (x-y)^2. The primitivity of the arithmetic progression triples follows from the one of the Pythagorean triples: gcd(u,w) = 1 follows from gcd(x,y) = 1, then gcd(u,v,w) = gcd(gcd(u,w),v) = 1. The converse can also be proved: given a primitive arithmetic progression triple (u,v,w), 1 <= u < v < w, gcd(u,v,w) = 1, the corresponding primitive Pythagorean triple with even y is ((w-u)/2,(w+u)/2,v) or ((w+u)/2,(w-u)/2,v), depending on whether (w+u)/2 is even or odd, respectively. - Wolfdieter Lang, May 22 2013
n appears A330174(n) times. - Ray Chandler, Feb 26 2020

Examples

			Primitive Pythagorean triangle connection: a(1) = 7 because (u,v,w) = (1,5,7) corresponds to the primitive Pythagorean triangle (x = (w-u)/2, y = (w+u)/2, z = v) = (3,4,5) with leg sum 3 + 4 = 7. - _Wolfdieter Lang_, May 23 2013
		

Crossrefs

Cf. A225949 (triangle version of leg sums).

Programs

  • Haskell
    a198441 n = a198441_list !! (n-1)
    a198441_list = map a198390 a198409_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    DeleteCases[tt, t_List /; GCD@@t > 1 && MemberQ[tt, t/GCD@@t]][[All, 3]] (* Jean-François Alcover, Oct 22 2021 *)

Formula

A198437(n) = a(n)^2; a(n) = A198390(A198409(n)).