A198442 Number of sequences of n coin flips that win on the last flip, if the sequence of flips ends with (1,1,0) or (1,0,0).
0, 0, 2, 3, 6, 8, 12, 15, 20, 24, 30, 35, 42, 48, 56, 63, 72, 80, 90, 99, 110, 120, 132, 143, 156, 168, 182, 195, 210, 224, 240, 255, 272, 288, 306, 323, 342, 360, 380, 399, 420, 440, 462, 483, 506, 528, 552, 575, 600, 624, 650, 675, 702, 728, 756, 783, 812
Offset: 1
Examples
For n = 6 the a(6) = 8 solutions are (0,0,0,1,1,0), (0,1,0,1,1,0),(0,0,1,1,1,0), (1,0,1,1,1,0), (0,1,1,1,1,0),(1,1,1,1,1,0) for Abel and (0,0,0,1,0,0), (0,1,0,1,0,0) for Kain. G.f. = 2*x^3 + 3*x^4 + 6*x^5 + 8*x^6 + 12*x^7 + 15*x^8 + 20*x^9 + ...
References
- J. J. Duistermaat, Discrete Integrable Systems, 2010, Springer Science+Business Media.
- A. Engel, Wahrscheinlichkeitsrechnung und Statistik, Band 2, Klett, 1978, pages 25-26.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- J. McKee, Computing division polynomials, Math. Comp. 63 (1994), 767-771. MR1248973 (95a:11110)
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
Magma
[(2*n^2-5-3*(-1)^n)/8: n in [1..60]]; // Vincenzo Librandi, Oct 28 2011
-
Maple
for n from 1 by 2 to 99 do a(n):=(n^2-1)/4: a(n+1):=(n+1)^2/4-1: end do: seq(a(n),n=1..100);
-
Mathematica
a[ n_] := Quotient[ n^2 - 1, 4]; (* Michael Somos, Jan 09 2015 *)
-
PARI
a(n)=([1,1,0,0,0,0;0,0,1,1,0,0;0,1,0,0,1,0;0,0,0,1,1,0;0,0,0,0,0,2;0,0,0,0,0,2]^n)[1,5] \\ Charles R Greathouse IV, Oct 26 2011
-
PARI
{a(n) = (n^2 - 1) \ 4}; /* Michael Somos, Jan 09 2015 */
-
Perl
sub a { my ($t, $n) = (0, shift); for (0..((1<<$n)-1)) { my $str = substr unpack("B32", pack("N", $_)), -$n; $t++ if ($str =~ /1.0$/ and not $str =~ /1.0./); } return $t } # Charles R Greathouse IV, Oct 26 2011
-
Sage
def A198442(): yield 0 x, y = 0, 2 while True: yield x x, y = x + y, x//y + 1 a = A198442(); print([next(a) for i in range(57)]) # Peter Luschny, Dec 22 2015
Formula
a(n) = (2*n^2 - 5 - 3*(-1)^n)/8.
a(2*n) = n^2 - 1; a(2*n+1) = n*(n + 1).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) with n>=4.
G.f.: x^3*(2 - x)/((1 + x)*(1 - x)^3). - R. J. Mathar, Oct 27 2011
a(n) = a(-n) for all n in Z. a(0) = -1. - Michael Somos, Jan 09 2015
0 = a(n)*(+a(n+1) - a(n+2)) + a(n+1)*(-1 - a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Jan 09 2015
1 = a(n) - a(n+1) - a(n+2) + a(n+3), 2 = a(n) - 2*a(n+2) + a(n+4) for all n in Z. - Michael Somos, Jan 09 2015
a(n) = A002620(n+2) - A052928(n+2) for n >= 1. (Note A265611(n) = A002620(n+1) + A052928(n+1) for n >= 1.) - Peter Luschny, Dec 22 2015
a(n) = floor((n^2 - 1)/4). - Bruno Berselli, Mar 15 2021
Extensions
a(12) inserted by Charles R Greathouse IV, Oct 26 2011
Comments