A198518 G.f. satisfies: A(x) = exp( Sum_{n>=1} A(x^n)/(1+x^n) * x^n/n ).
1, 1, 1, 2, 3, 5, 9, 16, 29, 54, 102, 194, 375, 730, 1434, 2837, 5650, 11311, 22767, 46023, 93422, 190322, 389037, 797613, 1639878, 3380099, 6983484, 14459570, 29999618, 62357426, 129843590, 270807835, 565674584, 1183301266, 2478624060, 5198504694, 10916110768, 22948299899
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 9*x^6 + 16*x^7 + 29*x^8 +... where log(A(x)) = A(x)/(1+x)*x + A(x^2)/(1+x^2)*x^2/2 + A(x^3)/(1+x^3)*x^3/3 +... The coefficients in A(x)/(1+x) begin: [1, 0, 1, 1, 2, 3, 6, 10, 19, 35, 67, 127, 248, 482, 952, 1885, 3765, ...] (this is, up to offset, A001678), from which g.f. A(x) may be generated by the Euler transform: A(x) = 1/((1-x)^1*(1-x^2)^0*(1-x^3)^1*(1-x^4)^1*(1-x^5)^2*(1-x^6)^3*(1-x^7)^6*(1-x^8)^10*(1-x^9)^19*(1-x^10)^35*...). From _Joerg Arndt_, Jun 28 2014: (Start) The a(6) = 9 rooted trees with 6 non-root nodes as described in the comment are: : level sequence out-degrees (dots for zeros) : 1: [ 0 1 2 3 3 3 2 ] [ 1 2 3 . . . . ] : O--o--o--o : .--o : .--o : .--o : : 2: [ 0 1 2 3 3 2 2 ] [ 1 3 2 . . . . ] : O--o--o--o : .--o : .--o : .--o : : 3: [ 0 1 2 3 3 2 1 ] [ 2 2 2 . . . . ] : O--o--o--o : .--o : .--o : .--o : : 4: [ 0 1 2 2 2 2 2 ] [ 1 5 . . . . . ] : O--o--o : .--o : .--o : .--o : .--o : : 5: [ 0 1 2 2 2 2 1 ] [ 2 4 . . . . . ] : O--o--o : .--o : .--o : .--o : .--o : : 6: [ 0 1 2 2 2 1 1 ] [ 3 3 . . . . . ] : O--o--o : .--o : .--o : .--o : .--o : : 7: [ 0 1 2 2 1 2 2 ] [ 2 2 . . 2 . . ] : O--o--o : .--o : .--o--o : .--o : : 8: [ 0 1 2 2 1 1 1 ] [ 4 2 . . . . . ] : O--o--o : .--o : .--o : .--o : .--o : : 9: [ 0 1 1 1 1 1 1 ] [ 6 . . . . . . ] : O--o : .--o : .--o : .--o : .--o : .--o (End) From _Gus Wiseman_, Jan 22 2020: (Start) The a(0) = 1 through a(6) = 9 rooted trees with n + 1 nodes where non-root vertices cannot have out-degree 1: o (o) (oo) (ooo) (oooo) (ooooo) (oooooo) ((oo)) ((ooo)) ((oooo)) ((ooooo)) (o(oo)) (o(ooo)) (o(oooo)) (oo(oo)) (oo(ooo)) ((o(oo))) (ooo(oo)) ((o(ooo))) ((oo)(oo)) ((oo(oo))) (o(o(oo))) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- David Callan, Rooted trees with no out-degree = 1, (7-July-2014).
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n) b(n):= `if`(n=0, 1, a(n)-b(n-1)) end: a:= proc(n) option remember; `if`(n=0, 1, add(add( d*b(d-1), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..50); # Alois P. Heinz, Jul 02 2014
-
Mathematica
b[n_] := b[n] = If[n==0, 1, a[n] - b[n-1]]; a[n_] := a[n] = If[n==0, 1, Sum[Sum[d*b[d-1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 21 2017, after Alois P. Heinz *) urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}]; Table[Length[Select[urt[n],FreeQ[Z@@#,{}]&]],{n,10}] (* _Gus Wiseman, Jan 22 2020 *)
-
PARI
{a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,subst(A/(1+x),x,x^m+x*O(x^n))*x^m/m)));polcoeff(A,n)}
Formula
Euler transform of coefficients in A(x)/(1+x), where g.f. A(x) = Sum_{n>=0} a(n)*x^n.
a(n) ~ c * d^n / n^(3/2), where d = A246403 = 2.18946198566085056388702757711..., c = 1.3437262442171062526771597... . - Vaclav Kotesovec, Sep 03 2014
Euler transform of A001678(n + 1). - Gus Wiseman, Feb 03 2020
Comments