cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198635 Total number of round trips, each of length 2*n on the graph P_5 (o-o-o-o-o).

Original entry on oeis.org

5, 8, 20, 56, 164, 488, 1460, 4376, 13124, 39368, 118100, 354296, 1062884, 3188648, 9565940, 28697816, 86093444, 258280328, 774840980, 2324522936, 6973568804, 20920706408, 62762119220, 188286357656, 564859072964, 1694577218888, 5083731656660, 15251194969976
Offset: 0

Views

Author

Wolfdieter Lang, Nov 02 2011

Keywords

Comments

See the array and triangle A198632 for the general case for the graph P_N (there N is n and the length is l = 2*k).

Examples

			With the graph P_5 as 1-2-3-4-5:
n=0: 5, from the length 0 walks starting at 1,2,3,4 and 5.
n=1: 8, from the walks of length 2, namely 121, 212, 232, 323, 343, 434, 454 and 545.
		

Crossrefs

Essentially the same as A115099.

Programs

Formula

a(n) = w(5,2*n), n >= 0, with w(5,l) the total number of closed walks on the graph P_5 (the simple path with 5 points (vertices) and 4 lines (or edges)).
O.g.f. for w(5,l) (with zeros for odd l): y*(d/dy)S(5,y)/S(5,y) with y = 1/x and Chebyshev S-polynomials (coefficients A049310). See also A198632 for a rewritten form.
G.f.: (5-12*x+3*x^2)/(1-4*x+3*x^2). - Colin Barker, Jan 02 2012
a(n) = 3*a(n-1) - 4, n > 1. - Vincenzo Librandi, Jan 02 2012
a(n) = 2*3^n + 2 for n > 0. - Andrew Howroyd, Mar 18 2017
a(n) = 2*A034472(n) for n > 0. - Andrew Howroyd, Mar 18 2017