A024076 a(n) = 7^n - n.
1, 6, 47, 340, 2397, 16802, 117643, 823536, 5764793, 40353598, 282475239, 1977326732, 13841287189, 96889010394, 678223072835, 4747561509928, 33232930569585, 232630513987190, 1628413597910431, 11398895185373124, 79792266297611981, 558545864083283986, 3909821048582988027
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (9,-15,7).
Crossrefs
Programs
-
Magma
[7^n-n: n in [0..25]]; // Vincenzo Librandi, Jul 03 2011
-
Magma
I:=[1, 6, 47]; [n le 3 select I[n] else 9*Self(n-1)-15*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 16 2013
-
Maple
A024076:=n->7^n-n; seq(A024076(n), n=0..30); # Wesley Ivan Hurt, Jan 24 2014
-
Mathematica
Table[7^n - n, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 3 x + 8 x^2) / ((1 - 7 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 16 2013 *)
-
PARI
a(n)=7^n-n \\ Charles R Greathouse IV, Oct 07 2015
Formula
From Vincenzo Librandi, Jun 16 2013: (Start)
G.f.: (1-3*x+8*x^2)/((1-7*x)*(1-x)^2).
a(n) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3). (End)
E.g.f.: exp(x)*(exp(6*x) - x). - Elmo R. Oliveira, Sep 10 2024
Comments