cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A024076 a(n) = 7^n - n.

Original entry on oeis.org

1, 6, 47, 340, 2397, 16802, 117643, 823536, 5764793, 40353598, 282475239, 1977326732, 13841287189, 96889010394, 678223072835, 4747561509928, 33232930569585, 232630513987190, 1628413597910431, 11398895185373124, 79792266297611981, 558545864083283986, 3909821048582988027
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. numbers of the form k^n - n: A000325 (k=2), A024024 (k=3), A024037 (k=4), A024050 (k=5), A024063 (k=6), this sequence (k=7), A024089 (k=8), A024102 (k=9), A024115 (k=10), A024128 (k=11), A024141 (k=12).
Cf. A198688 (first differences).

Programs

Formula

From Vincenzo Librandi, Jun 16 2013: (Start)
G.f.: (1-3*x+8*x^2)/((1-7*x)*(1-x)^2).
a(n) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3). (End)
E.g.f.: exp(x)*(exp(6*x) - x). - Elmo R. Oliveira, Sep 10 2024

A293356 Even integers k such that lambda(sum of even divisors of k) = sum of odd divisors of k.

Original entry on oeis.org

2, 20, 40, 48, 68, 176, 212, 304, 328, 944, 1360, 1712, 1888, 2320, 2344, 2864, 4240, 7120, 7888, 7984, 8448, 8960, 11920, 12032, 14416, 14592, 15536, 17492, 20224, 21520, 23984, 24208, 24592, 25904, 26112, 28160, 29440, 30464, 34560, 35920, 36352, 40528, 41296
Offset: 1

Views

Author

Michel Lagneau, Oct 07 2017

Keywords

Comments

Or even integers k such that A002322(A146076(k)) = A000593(k).
Observations:
The primes a(n)/4: {5, 17, 53, 4373, 13121, ...} are of the form 2*3^m - 1, m > 0 (A079363).
The primes a(n)/8: {5, 41, 293, 4941257, ...} are of the form 6*7^m - 1, m = 0, 1, ... (primes in A198688).
The set of the primes {a(n)/16} = {3, 11, 19, 59, 107, 179, 499, 971, 1499, 1619, ...} contains the primes of the form 4*3^(2m+1) - 1 = {11, 107, 971, ...}, m = 0, 1, ...

Examples

			68 is in the sequence because A002322(A146076(68)) = A002322(108) = 18 and A000593(68) = 18.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 2 by 2 to 10^6 do:
    x:=divisors(n):n1:=nops(x):s0:=0:s1:=0:
       for k from 1 to n1 do:
        if type(x[k],even)
         then
         s0:=s0+ x[k]:
         else
         s1:=s1+ x[k]:
        fi:
      od:
        if s1=lambda(s0)
         then
         printf(`%d, `,n):
         else
        fi:
    od:
  • Mathematica
    fQ[n_] :=
    Block[{d = Divisors@n},
      CarmichaelLambda[Plus @@ Select[d, EvenQ]] ==
    Plus @@ Select[d, OddQ]]; Select[2 Range@2000, fQ] (* Robert G. Wilson v, Oct 07 2017 *)
  • PARI
    is(n)=if(n%2, return(0)); my(s=valuation(n,2),d=sigma(n>>s)); lcm(znstar(d*(2^(s+1)-2))[2])==d \\ Charles R Greathouse IV, Dec 26 2017

Extensions

Edited by Robert Israel, Dec 28 2017
Showing 1-2 of 2 results.