cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198863 Numbers whose squares are pandigital numbers with exactly two occurrences of each digit.

Original entry on oeis.org

3164252736, 3164326683, 3164389113, 3164391957, 3164406057, 3164416923, 3164421333, 3164454864, 3164466768, 3164482974, 3164528124, 3164547114, 3164689392, 3164695206, 3164735277, 3164770866, 3164789766, 3164863185, 3164867118, 3164907357, 3165009693
Offset: 1

Views

Author

Pablo Martínez, Oct 30 2011

Keywords

Comments

Later terms include: 4000171725, 4000183233, 4000198443, 4000203567.
Because the sum of the digits of a(n)^2 is 90, 9 divides a(n)^2. Hence, 3 divides a(n). - T. D. Noe, Nov 08 2011

Examples

			4000171725^2 = 16001373829489475625.
		

Crossrefs

Cf. A156977 (n^2 contains each digit once).

Programs

  • Mathematica
    Select[Range[3164250000, 3164450000], Union[DigitCount[#^2]] == {2} &] (* Alonso del Arte, Oct 31 2011 *)
    t = {}; n = 3164211348; nMax = 9994386752; While[n <= nMax && Length[t] < 21, While[n <= nMax && Union[DigitCount[n^2]] != {2}, n = n + 3]; If[n <= nMax, AppendTo[t, n]; Print[n]; n = n + 3]]; t (* T. D. Noe, Nov 08 2011 *)

Extensions

All displayed terms are from Charles R Greathouse IV, Alonso del Arte and T. D. Noe, Nov 08 2011