cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Pablo Martínez

Pablo Martínez's wiki page.

Pablo Martínez has authored 2 sequences.

A210205 The sum of three consecutive prime numbers, beginning with a(n), is a cube.

Original entry on oeis.org

439, 34603, 1016201, 3696493, 4002991, 6344687, 10221397, 14662309, 16209029, 19925483, 20856907, 22805969, 43441271, 60120691, 60761413, 62056457, 62710787, 87791567, 96268243, 125977651, 166225747, 170027449
Offset: 1

Author

Pablo Martínez, Mar 18 2012

Keywords

Examples

			prime(85) + prime(86) + prime(87) = 439 + 443 + 449 = 1331 = 11^3.
		

Crossrefs

Cf. A061308.

Programs

  • Mathematica
    t = {}; p = 2; q = 3; Do[r = NextPrime[q]; If[IntegerQ[(p + q + r)^(1/3)], AppendTo[t, p]; Print[p]]; p = q; q = r, {1000000}]; t (* T. D. Noe, Mar 24 2012 *)
    Select[Partition[Prime[Range[9505000]],3,1],IntegerQ[Surd[Total[#],3]]&][[All,1]] (* Harvey P. Dale, May 22 2020 *)
  • Python
    from _future_ import division
    from sympy import nextprime, prevprime
    A210205_list = []
    for i in range(3,10**6):
        n = i**3
        p2 = prevprime(n//3)
        p1, p3 = prevprime(p2), nextprime(p2)
        q = p1+p2+p3
        while q <= n:
            if q == n:
                A210205_list.append(p1)
            p1, p2, p3 = p2, p3, nextprime(p3)
            q = p1+p2+p3 # Chai Wah Wu, Dec 31 2015

Extensions

Extended by T. D. Noe, Mar 24 2012

A198863 Numbers whose squares are pandigital numbers with exactly two occurrences of each digit.

Original entry on oeis.org

3164252736, 3164326683, 3164389113, 3164391957, 3164406057, 3164416923, 3164421333, 3164454864, 3164466768, 3164482974, 3164528124, 3164547114, 3164689392, 3164695206, 3164735277, 3164770866, 3164789766, 3164863185, 3164867118, 3164907357, 3165009693
Offset: 1

Author

Pablo Martínez, Oct 30 2011

Keywords

Comments

Later terms include: 4000171725, 4000183233, 4000198443, 4000203567.
Because the sum of the digits of a(n)^2 is 90, 9 divides a(n)^2. Hence, 3 divides a(n). - T. D. Noe, Nov 08 2011

Examples

			4000171725^2 = 16001373829489475625.
		

Crossrefs

Cf. A156977 (n^2 contains each digit once).

Programs

  • Mathematica
    Select[Range[3164250000, 3164450000], Union[DigitCount[#^2]] == {2} &] (* Alonso del Arte, Oct 31 2011 *)
    t = {}; n = 3164211348; nMax = 9994386752; While[n <= nMax && Length[t] < 21, While[n <= nMax && Union[DigitCount[n^2]] != {2}, n = n + 3]; If[n <= nMax, AppendTo[t, n]; Print[n]; n = n + 3]]; t (* T. D. Noe, Nov 08 2011 *)

Extensions

All displayed terms are from Charles R Greathouse IV, Alonso del Arte and T. D. Noe, Nov 08 2011