A198866 Decimal expansion of x < 0 satisfying x^2 + sin(x) = 1.
1, 4, 0, 9, 6, 2, 4, 0, 0, 4, 0, 0, 2, 5, 9, 6, 2, 4, 9, 2, 3, 5, 5, 9, 3, 9, 7, 0, 5, 8, 9, 4, 9, 3, 5, 4, 7, 1, 2, 3, 5, 4, 8, 3, 5, 1, 0, 7, 8, 9, 0, 1, 5, 1, 5, 1, 0, 1, 6, 6, 8, 3, 0, 0, 9, 9, 1, 8, 3, 6, 0, 1, 6, 7, 3, 1, 8, 1, 4, 5, 2, 5, 1, 6, 8, 7, 4, 8, 9, 2, 1, 4, 3, 2, 5, 9, 0, 7, 9
Offset: 1
Examples
negative: -1.40962400400259624923559397058949354... positive: 0.63673265080528201088799090383828005...
Links
Programs
-
Mathematica
(* Program 1: this sequence and A198867 *) a = 1; b = 1; c = 1; f[x_] := a*x^2 + b*Sin[x]; g[x_] := c Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -1.41, -1.40}, WorkingPrecision -> 110] RealDigits[r] (* this sequence *) r = x /. FindRoot[f[x] == g[x], {x, .63, .64}, WorkingPrecision -> 110] RealDigits[r] (* A198867 *) (* Program 2: implicit surface of x^2+u*sin(x)=v *) f[{x_, u_, v_}] := x^2 + u*Sin[x] - v; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, 6}, {v, u, 12}]; ListPlot3D[Flatten[t, 1]] (* for this sequence *)
-
PARI
a=1; b=1; c=1; solve(x=-2, 0, a*x^2 + b*sin(x) - c) \\ G. C. Greubel, Feb 20 2019
-
Sage
a=1; b=1; c=1; (a*x^2 + b*sin(x)==c).find_root(-2,0,x) # G. C. Greubel, Feb 20 2019
Comments