A199109 a(n) = (7*3^n + 1)/2.
4, 11, 32, 95, 284, 851, 2552, 7655, 22964, 68891, 206672, 620015, 1860044, 5580131, 16740392, 50221175, 150663524, 451990571, 1355971712, 4067915135, 12203745404, 36611236211, 109833708632, 329501125895, 988503377684, 2965510133051, 8896530399152, 26689591197455
Offset: 0
Examples
Ternary....................Decimal 11...............................4 102.............................11 1012............................32 10112...........................95 101112.........................284 1011112........................851 10111112......................2552 101111112.....................7655 1011111112...................22964, etc. - _Philippe Deléham_, Feb 16 2014
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Clique.
- Eric Weisstein's World of Mathematics, Mycielski Graph.
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
Programs
-
Magma
[(7*3^n+1)/2 : n in [0..30]];
-
Mathematica
Table[(7 3^n + 1)/2, {n, 0, 20}] (* Eric W. Weisstein, Nov 29 2017 *) (7 3^Range[0, 20] + 1)/2 (* Eric W. Weisstein, Nov 29 2017 *) LinearRecurrence[{4, -3}, {11, 32}, {0, 20}] (* Eric W. Weisstein, Nov 29 2017 *) CoefficientList[Series[(4 - 5 x)/(1 - 4 x + 3 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
-
PARI
a(n)=7*3^n\2 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 3*a(n-1) - 1.
a(n) = 4*a(n-1) - 3*a(n-2).
G.f.: (4-5*x)/((1-x)*(1-3*x)). - Bruno Berselli, Nov 03 2011
From Elmo R. Oliveira, Apr 02 2025: (Start)
E.g.f.: exp(x)*(7*exp(2*x) + 1)/2.
a(n) = A199110(n)/2. (End)
Comments