cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A199340 Primes having only {0, 3, 4} as digits.

Original entry on oeis.org

3, 43, 433, 443, 3343, 3433, 4003, 30403, 33343, 33403, 34033, 34303, 34403, 40343, 40433, 43003, 43403, 300043, 300343, 304033, 304303, 304433, 330433, 333433, 334043, 334333, 334403, 343303, 343333, 343433, 400033, 403003, 403043, 403433, 430303, 430333
Offset: 1

Views

Author

M. F. Hasler, Nov 05 2011

Keywords

Comments

All terms end in '3'. This could be used to speed up the given program.
A020461 is a subsequence. - Vincenzo Librandi, Jul 23 2015

Crossrefs

Cf. Primes that contain only the digits (3,4,k): this sequence (k=0), A199341 (k=1), A199342 (k=2), A199345 (k=5), A199346 (k=6), A199347 (k=7), A199348 (k=8), A199349 (k=9).

Programs

  • Magma
    [p: p in PrimesUpTo(5*10^5) | Set(Intseq(p)) subset [3, 4, 0]]; // Vincenzo Librandi, Jul 23 2015
    
  • Mathematica
    Select[Prime[Range[5 10^4]], Complement[IntegerDigits[#], {3, 4, 0}]=={} &] (* Vincenzo Librandi, Jul 23 2015 *)
    Select[FromDigits/@Tuples[{0,3,4},6],PrimeQ] (* Harvey P. Dale, Mar 21 2020 *)
    Select[10#+3&/@FromDigits/@Tuples[{0,3,4},5],PrimeQ] (* Harvey P. Dale, May 02 2022 *)
  • PARI
    a(n, list=0, L=[0, 3, 4], reqpal=0)={my(t); for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&!L[1]), #L]), isprime(t=vector(d, i, L[v[i]])*u)||next; reqpal && !isprime(A004086(t)) && next; list && print1(t", "); n--||return(t)))} \\ Syntax updated for current PARI version. - M. F. Hasler, Jul 25 2015
    
  • PARI
    {forprime(p=3,1e6,p%10==3&&!setminus(Set(digits(p)),[3,4])&&print1(p","))} \\ [0] evaluates to false. - M. F. Hasler, Jul 25 2015

A199349 Primes having only {3, 4, 9} as digits.

Original entry on oeis.org

3, 43, 349, 433, 439, 443, 449, 499, 3343, 3433, 3449, 3499, 3943, 4339, 4349, 4493, 4933, 4943, 4993, 4999, 9343, 9349, 9433, 9439, 9949, 33343, 33349, 33493, 34439, 34499, 34939, 34949, 39343, 39439, 39443, 39499, 43399, 43499, 43933, 43943, 44449, 44939, 49333, 49339, 49393, 49433, 49499, 49939, 49943, 49993
Offset: 1

Views

Author

M. F. Hasler, Nov 05 2011

Keywords

Comments

A020461 and A020466 are subsequences. - Vincenzo Librandi, Jul 30 2015

Crossrefs

Cf. Primes that contain only the digits (3,4,k): A199340 (k=0), A199341 (k=1), A199342 (k=2), A199345 (k=5), A199346 (k=6), A199347 (k=7), A199348 (k=8).

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [3, 4, 9]]; // Vincenzo Librandi, Jul 30 2015
  • Mathematica
    Select[Prime[Range[2 10^4]], Complement[IntegerDigits[#], {3, 4, 9}]=={} &] (* Vincenzo Librandi, Jul 30 2015 *)
    Select[Flatten[Table[FromDigits/@Tuples[{3,4,9},n],{n,5}]],PrimeQ] (* Harvey P. Dale, May 02 2023 *)
  • PARI
    a(n, list=0, L=[3,4,9], reqpal=0)={my(t); for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&!L[1]), #L]), isprime(t=vecextract(L,v)*u) || next; reqpal && !isprime(A004086(t)) && next; list && print1(t", "); n--||return(t)))}
    

A260266 Primes having only {0, 1, 4} as digits.

Original entry on oeis.org

11, 41, 101, 401, 4001, 4111, 4441, 10111, 10141, 11411, 14011, 14401, 14411, 40111, 41011, 41141, 41411, 44041, 44101, 44111, 100411, 101111, 101141, 101411, 110441, 114001, 114041, 140111, 140401, 140411, 141041, 141101, 400441, 401101, 401411, 404011
Offset: 1

Views

Author

Vincenzo Librandi, Jul 22 2015

Keywords

Comments

A020449 and A020452 are subsequences.
All terms end with a digit "1". - M. F. Hasler, Jul 26 2015

Crossrefs

Primes that contain only digits among {1,4,k}: this sequence (k=0), A260267 (k=2), A199341 (k=3), A260268 (k=5), A260269 (k=6), A079651 (k=7), A260270 (k=8), A260271 (k=9).

Programs

  • Magma
    [p: p in PrimesUpTo(5*10^5) | Set(Intseq(p)) subset [1, 4, 0]];
    
  • Mathematica
    Select[Prime[Range[4 10^4]], Complement[IntegerDigits[#], {1, 4, 0}]=={} &]
  • PARI
    A260266(n=50,show=0)={for(d=1,1e9,my(t,u=vector(d,i,10^(d-i))~);forvec(v=vector(d,i,[i==1||i==d,1+(iM. F. Hasler, Jul 25 2015

A386023 Primes having only {0, 1, 3, 4} as digits.

Original entry on oeis.org

3, 11, 13, 31, 41, 43, 101, 103, 113, 131, 311, 313, 331, 401, 431, 433, 443, 1013, 1031, 1033, 1103, 1301, 1303, 1433, 3001, 3011, 3041, 3301, 3313, 3331, 3343, 3413, 3433, 4001, 4003, 4013, 4111, 4133, 4441, 10103, 10111, 10133, 10141, 10301, 10303, 10313, 10331
Offset: 1

Views

Author

Jason Bard, Jul 14 2025

Keywords

Crossrefs

Subsequence of A036956.
Supersequence of A199341, A260044, A260266.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 3, 4]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 1, 3, 4}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 1, 3, 4]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0134"), 41))) # uses function/imports in A385776
    

A386085 Primes having only {1, 2, 3, 4} as digits.

Original entry on oeis.org

2, 3, 11, 13, 23, 31, 41, 43, 113, 131, 211, 223, 233, 241, 311, 313, 331, 421, 431, 433, 443, 1123, 1213, 1223, 1231, 1321, 1423, 1433, 2111, 2113, 2131, 2141, 2143, 2213, 2221, 2243, 2311, 2333, 2341, 2411, 2423, 2441, 3121, 3221, 3313, 3323, 3331, 3343, 3413
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Subsequence of A036956, A036958.
Supersequence of A062350, A199341, A199342, A260267.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 3, 4]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 3, 4}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 3, 4]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1234"), 41))) # uses function/imports in A385776
    

A386105 Primes having only {1, 3, 4, 5} as digits.

Original entry on oeis.org

3, 5, 11, 13, 31, 41, 43, 53, 113, 131, 151, 311, 313, 331, 353, 431, 433, 443, 541, 1151, 1153, 1433, 1451, 1453, 1511, 1531, 1543, 1553, 3313, 3331, 3343, 3413, 3433, 3511, 3533, 3541, 4111, 4133, 4153, 4441, 4451, 4513, 5113, 5153, 5333, 5351, 5413, 5431, 5441
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A199341, A199345, A260224, A260268.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 3, 4, 5]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 3, 4, 5}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 3, 4, 5]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1345"), 41))) # uses function/imports in A385776
    

A386106 Primes having only {1, 3, 4, 6} as digits.

Original entry on oeis.org

3, 11, 13, 31, 41, 43, 61, 113, 131, 163, 311, 313, 331, 431, 433, 443, 461, 463, 613, 631, 641, 643, 661, 1163, 1361, 1433, 1613, 1663, 3163, 3313, 3331, 3343, 3361, 3413, 3433, 3461, 3463, 3613, 3631, 3643, 4111, 4133, 4363, 4441, 4463, 4643, 4663, 6113, 6131
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A199341, A199346, A260269, A385777.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 3, 4, 6]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 3, 4, 6}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 3, 4, 6]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1346"), 41))) # uses function/imports in A385776
    

A386107 Primes having only {1, 3, 4, 7} as digits.

Original entry on oeis.org

3, 7, 11, 13, 17, 31, 37, 41, 43, 47, 71, 73, 113, 131, 137, 173, 311, 313, 317, 331, 337, 347, 373, 431, 433, 443, 733, 743, 773, 1117, 1171, 1373, 1433, 1447, 1471, 1733, 1741, 1747, 1777, 3137, 3313, 3331, 3343, 3347, 3371, 3373, 3413, 3433, 3733, 4111, 4133
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A079651, A199341, A199347, A260379.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 3, 4, 7]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 3, 4, 7}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 3, 4, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1347"), 41))) # uses function/imports in A385776
    

A386108 Primes having only {1, 3, 4, 8} as digits.

Original entry on oeis.org

3, 11, 13, 31, 41, 43, 83, 113, 131, 181, 311, 313, 331, 383, 431, 433, 443, 811, 881, 883, 1181, 1381, 1433, 1481, 1483, 1811, 1831, 3181, 3313, 3331, 3343, 3413, 3433, 3833, 3881, 4111, 4133, 4441, 4481, 4483, 4813, 4831, 8111, 8311, 8431, 8443, 8831, 11113
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A199341, A199348, A260270, A385778.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 3, 4, 8]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 3, 4, 8}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 3, 4, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1348"), 41))) # uses function/imports in A385776
    

A386109 Primes having only {1, 3, 4, 9} as digits.

Original entry on oeis.org

3, 11, 13, 19, 31, 41, 43, 113, 131, 139, 149, 191, 193, 199, 311, 313, 331, 349, 419, 431, 433, 439, 443, 449, 491, 499, 911, 919, 941, 991, 1193, 1319, 1399, 1433, 1439, 1493, 1499, 1913, 1931, 1933, 1949, 1993, 1999, 3119, 3191, 3313, 3319, 3331, 3343, 3391
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A199341, A199349, A260271, A329761.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 3, 4, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 3, 4, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 3, 4, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1349"), 41))) # uses function/imports in A385776
    
Showing 1-10 of 10 results.