cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199514 Numerators of zeros to a symmetric polynomial. Numerators of mu(n)^2*(n/(n - phi(n))).

Original entry on oeis.org

2, 3, 0, 5, 3, 7, 0, 0, 5, 11, 0, 13, 7, 15, 0, 17, 0, 19, 0, 7, 11, 23, 0, 0, 13, 0, 0, 29, 15, 31, 0, 33, 17, 35, 0, 37, 19, 13, 0, 41, 7, 43, 0, 0, 23, 47, 0, 0, 0, 51, 0, 53, 0, 11, 0, 19, 29, 59, 0, 61, 31, 0, 0, 65, 33, 67, 0, 69, 35, 71, 0, 73, 37, 0, 0, 77, 13, 79, 0, 0, 41, 83, 0, 85, 43, 87, 0, 89, 0
Offset: 2

Views

Author

Mats Granvik, Nov 07 2011

Keywords

Comments

The polynomials are defined as the determinant of a symmetric matrix with the following definition:
T(n, 1) = 1, T(1, k) = 1, T(n, k) = If n < k, x - Sum_(i = 1)^(i = n - 1) of T(k - i, n), otherwise x - Sum_(i = 1)^(i = k - 1) of T(k - i, n).
Eric Naslund on Mathematics Stack Exchange kindly gave the description in terms of arithmetic functions. The sequence of fractions A199514/A199515 is an integer only for prime numbers. As the matrix gets bigger there are fractions as zeros that are greater than small prime numbers.

Examples

			The 7 X 7 symmetric matrix is:
  1......1......1......1......1......1......1
  1...-1+x......1...-1+x......1...-1+x......1
  1......1...-2+x......1......1...-2+x......1
  1...-1+x......1.....-1......1...-1+x......1
  1......1......1......1...-4+x......1......1
  1...-1+x...-2+x...-1+x......1...2-2x......1
  1......1......1......1......1......1...-6+x
Taking the determinant of the matrix above gives the polynomial: -1260 x + 2322 x^2 - 1594 x^3 + 506 x^4 - 74 x^5 + 4 x^6
The polynomials for the first seven matrices are:
  1,
  -2 + x,
  6 - 5 x + x^2,
  -6 x + 5 x^2 - x^3,
  30 x - 31 x^2 + 10 x^3 - x^4,
  180 x - 306 x^2 + 184 x^3 - 46 x^4 + 4 x^5,
  -1260 x + 2322 x^2 - 1594 x^3 + 506 x^4 - 74 x^5 + 4 x^6,
  ...
and their zeros respectively are:
  {}
  2
  2, 3
  2, 3, 0
  2, 3, 0, 5
  2, 3, 0, 5, 3/2
  2, 3, 0, 5, 3/2, 7
  ...
		

Crossrefs

Cf. A000010, A008683, A008966, A051953, A191898. Denominators: A199515.

Programs

  • Mathematica
    Table[Numerator[MoebiusMu[n]^2*(n/(n - EulerPhi[n]))], {n, 2, 90}]
    (* or *)
    Clear[nn, t, n, k, M, x];
    nn = 90;
    a = Range[nn]*0;
    Do[
    t[n_, 1] = 1;
    t[1, k_] = 1;
    t[n_, k_] :=
      t[n, k] =
       If[n < k,
        If[And[n > 1, k > 1], x - Sum[t[k - i, n], {i, 1, n - 1}], 0],
        If[And[n > 1, k > 1], x - Sum[t[n - i, k], {i, 1, k - 1}], 0]];
    M = Table[Table[t[n, k], {k, 1, i}], {n, 1, i}];
    a[[i]] = x /. Solve[Det[M] == 0, x], {i, 1, nn}];
    a[[1]] = {};
    b = Differences[Table[Total[a[[i]]], {i, 1, nn}]];
    Numerator[b]
  • PARI
    A199514(n) = numerator(issquarefree(n)*(n/(n-eulerphi(n)))); \\ Antti Karttunen, Sep 07 2018

Formula

a(n)/A199515(n) = A008683(n)^2*(n/(n - A000010(n))), n > 1.
a(n) = numerator of A008966(n)*(n/A051953(n)). - Antti Karttunen, Sep 07 2018