A199514 Numerators of zeros to a symmetric polynomial. Numerators of mu(n)^2*(n/(n - phi(n))).
2, 3, 0, 5, 3, 7, 0, 0, 5, 11, 0, 13, 7, 15, 0, 17, 0, 19, 0, 7, 11, 23, 0, 0, 13, 0, 0, 29, 15, 31, 0, 33, 17, 35, 0, 37, 19, 13, 0, 41, 7, 43, 0, 0, 23, 47, 0, 0, 0, 51, 0, 53, 0, 11, 0, 19, 29, 59, 0, 61, 31, 0, 0, 65, 33, 67, 0, 69, 35, 71, 0, 73, 37, 0, 0, 77, 13, 79, 0, 0, 41, 83, 0, 85, 43, 87, 0, 89, 0
Offset: 2
Examples
The 7 X 7 symmetric matrix is: 1......1......1......1......1......1......1 1...-1+x......1...-1+x......1...-1+x......1 1......1...-2+x......1......1...-2+x......1 1...-1+x......1.....-1......1...-1+x......1 1......1......1......1...-4+x......1......1 1...-1+x...-2+x...-1+x......1...2-2x......1 1......1......1......1......1......1...-6+x Taking the determinant of the matrix above gives the polynomial: -1260 x + 2322 x^2 - 1594 x^3 + 506 x^4 - 74 x^5 + 4 x^6 The polynomials for the first seven matrices are: 1, -2 + x, 6 - 5 x + x^2, -6 x + 5 x^2 - x^3, 30 x - 31 x^2 + 10 x^3 - x^4, 180 x - 306 x^2 + 184 x^3 - 46 x^4 + 4 x^5, -1260 x + 2322 x^2 - 1594 x^3 + 506 x^4 - 74 x^5 + 4 x^6, ... and their zeros respectively are: {} 2 2, 3 2, 3, 0 2, 3, 0, 5 2, 3, 0, 5, 3/2 2, 3, 0, 5, 3/2, 7 ...
Links
- Antti Karttunen, Table of n, a(n) for n = 2..65537
- Mats Granvik, Are the primes found as a subset in this sequence?, Mathematics Stack Exchange.
Programs
-
Mathematica
Table[Numerator[MoebiusMu[n]^2*(n/(n - EulerPhi[n]))], {n, 2, 90}] (* or *) Clear[nn, t, n, k, M, x]; nn = 90; a = Range[nn]*0; Do[ t[n_, 1] = 1; t[1, k_] = 1; t[n_, k_] := t[n, k] = If[n < k, If[And[n > 1, k > 1], x - Sum[t[k - i, n], {i, 1, n - 1}], 0], If[And[n > 1, k > 1], x - Sum[t[n - i, k], {i, 1, k - 1}], 0]]; M = Table[Table[t[n, k], {k, 1, i}], {n, 1, i}]; a[[i]] = x /. Solve[Det[M] == 0, x], {i, 1, nn}]; a[[1]] = {}; b = Differences[Table[Total[a[[i]]], {i, 1, nn}]]; Numerator[b]
-
PARI
A199514(n) = numerator(issquarefree(n)*(n/(n-eulerphi(n)))); \\ Antti Karttunen, Sep 07 2018
Comments