cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A191898 Symmetric square array read by antidiagonals: T(n,1)=1, T(1,k)=1, T(n,k) = -Sum_{i=1..k-1} T(n-i,k) for n >= k, -Sum_{i=1..n-1} T(k-i,n) for n < k.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -2, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -2, 1, 1, -2, 1, 1, 1, -1, 1, -1, -4, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -6, -1, 1, -1, 1, -1, 1
Offset: 1

Views

Author

Mats Granvik, Jun 19 2011

Keywords

Comments

Rows equal columns and are periodic. No zero elements are found (conjecture). The recurrence is related to the recurrence for the Mahonian numbers. The main diagonal is the Dirichlet inverse of the Euler totient function A023900 (conjecture). [The 2nd and 3rd formulas state that the conjecture is correct. R. J. Mathar, Sep 16 2017]
The sums from n=1 to infinity of T(n,k)/n converge to the Mangoldt function for column k (conjecture).
If gcd(n,k)=1 then T(n,k)=1 and if T(n,k)=1 then gcd(n,k)=1 (conjecture).
The Dirichlet generating functions for s > 1 for the columns appear to be (see A054535):
Zeta(s)*(1 + (Sum over all possible combinations of products of negative distinct prime factors of k, up to rearrangement, 1/((-1* first distinct prime factor)*(-1*second distinct prime factor)*(-1*third distinct prime factor * ...))^(s-1))).
Examples:
k=1: Zeta(s)
k=2: Zeta(s)*(1 - 1/2^(s-1))
k=3: Zeta(s)*(1 - 1/3^(s-1))
k=4: Zeta(s)*(1 - 1/2^(s-1))
k=5: Zeta(s)*(1 - 1/5^(s-1))
k=6: Zeta(s)*(1 - 1/2^(s-1) - 1/3^(s-1) + 1/6^(s-1))
k=7: Zeta(s)*(1 - 1/7^(s-1))
...
k=30: Zeta(s)*(1 - 1/2^(s-1) - 1/3^(s-1) - 1/5^(s-1) + 1/6^(s-1) + 1/10^(s-1) + 1/15^(s-1) - 1/30^(s-1))
...
(conjecture)
See triangle A142971 for negative distinct prime factors.
This could probably be checked by matrix multiplication.
The signs of the eigenvalues of this matrix are a rearrangement of the Mobius function A008683 (conjecture). The first few eigenvalues are:
{1.0000}
{-1.4142, 1.4142}
{-2.6554, 1.8662, -1.2108}
{-3.4393, 2.1004, -1.6611, 0}
{-4.7711, -3.3867, 2.5910, -1.4332, 0}
{-5.2439, -3.4641, 3.4641, 2.5169, -2.2730, 0}
The relation to Dirichlet characters for the entries in this matrix appears appears to be formulated in terms of the sequence A089026 which is equal to n if n is a prime, otherwise equal to 1. See Mathematica program below. [Mats Granvik, Nov 23 2013]
From Mats Granvik, Jun 19 2016: (Start)
Remark about the Dirichlet generating function for the whole matrix: Subtracting the first column (in the form of zeta(c)) of the matrix gives us the limit: lim_{c->1} zeta(s)*zeta(c)/zeta(c+s-1)-zeta(c) = -zeta'(s)/zeta(s) which is the classical Dirichlet generating function for the von Mangoldt function.
For n >= k, see A231425, this matrix has row sums equal to zero except for the first row:
1=1
1-1=0
1+1-2=0
1-1+1-1=0
1+1+1+1-4=0
...
log(A014963(n)) = Sum_{k>=1} A191898(n,k)/k, for n>1.
log(A014963(k)) = Sum_{n>=1} A191898(n,k)/n, for k>1.
log(A014963(n)) = limit of zeta(s)*(Sum_{d divides n} A008683(d)/d^(s-1)) as s->1, for n>1.
A008683(n) = Sum_{k=1..n} A191898(n,k)*exp(-i*2*Pi*k/n)/n.
A008683(n) = Sum_{n=1..k} A191898(n,k)*exp(-i*2*Pi*n/k)/k.
(End)
From Mats Granvik, Aug 09 2016: (Start)
The Dirichlet generating function for the matrix is zero for any pair c and s = 2 - c and any pair s and c = 2 - s except at the pole c = 1 and s = 1 where it is indeterminate.
In the Mathematica program section, in the expression for the matrix as Dirichlets characters, the variables s and c can apparently be any pair of positive integers.
Limits related to the Dirichlet generating function for the matrix: Let s = ZetaZero(n), then lim_{c->1} zeta(s*c)/zeta(c+s-1) = ZetaZero(n). Let s = ZetaZero(n), then lim_{c->1} zeta(s*c)/zeta(c+s*c-1) = ZetaZero(n)/(1+ZetaZero(n)).
(End)

Examples

			Array starts:
n\k | 1    2    3    4    5    6    7    8    9   10
----+-----------------------------------------------------
1   | 1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...
2   | 1,  -1,   1,  -1,   1,  -1,   1,  -1,   1,  -1, ...
3   | 1,   1,  -2,   1,   1,  -2,   1,   1,  -2,   1, ...
4   | 1,  -1,   1,  -1,   1,  -1,   1,  -1,   1,  -1, ...
5   | 1,   1,   1,   1,  -4,   1,   1,   1,   1,  -4, ...
6   | 1,  -1,  -2,  -1,   1,   2,   1,  -1,  -2,  -1, ...
7   | 1,   1,   1,   1,   1,   1,  -6,   1,   1,   1, ...
8   | 1,  -1,   1,  -1,   1,  -1,   1,  -1,   1,  -1, ...
9   | 1,   1,  -2,   1,   1,  -2,   1,   1,  -2,   1, ...
10  | 1,  -1,   1,  -1,  -4,  -1,   1,  -1,   1,   4, ...
		

Crossrefs

Programs

  • Mathematica
    T[ n_, k_] := T[ n, k] = Which[ n < 1 || k < 1, 0, n == 1 || k == 1, 1, k > n, T[k, n], n > k,T[k, Mod[n, k, 1]], True, -Sum[ T[n, i], {i, n - 1}]]; (* Michael Somos, Jul 18 2011 *)
    (* Conjectured expression for the matrix as Dirichlet characters *) s = RandomInteger[{1, 3}]; c = RandomInteger[{1, 3}]; nn = 12; b = Table[Exp[MangoldtLambda[Divisors[n]]]^-MoebiusMu[Divisors[n]], {n, 1, nn^Max[s, c]}]; j = 1; MatrixForm[Table[Table[Product[(b[[n^s]][[m]]*DirichletCharacter[b[[n^s]][[m]], j, k^c] - (b[[n^s]][[m]] - 1)), {m, 1, Length[Divisors[n]]}], {n, 1, nn}], {k, 1, nn}]] (* Mats Granvik, Nov 23 2013 and Aug 09 2016 *)
  • PARI
    {T(n, k) = if( n<1 || k<1, 0, n==1 || k==1, 1, k>n, T(k, n), kMichael Somos, Jul 18 2011 */
    
  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def T(n, k): return 0 if n<1 or k<1 else 1 if n==1 or k==1 else T(k, n) if k>n else T(k, (n - 1)%k + 1) if n>k else -sum([T(n, i) for i in range(1, n)])
    for n in range(1, 21): print([T(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Oct 23 2017

Formula

T(n,1)=1, T(1,k)=1, n>=k: -Sum_{i=1..k-1} T(n-i,k), n
T(n, n) = A023900(n). - Michael Somos, Jul 18 2011
T(n, k) = A023900(gcd(n,k)). - Mats Granvik, Jun 18 2012
Dirichlet generating function for sequence in the n-th row: zeta(s)*Sum_{ d divides n } mu(d)/d^(s-1). - Mats Granvik, Jun 18 2012 & Jun 19 2016
From Mats Granvik, Jun 19 2016: (Start)
Dirichlet generating function for the whole matrix: Sum_{k>=1} (Sum_{n>=1} T(n,k)/(n^c*k^s)) = Sum_{n>=1} (zeta(s)*Sum_{ d divides n } mu(d)/d^(s-1))/n^c = zeta(s)*zeta(c)/zeta( c + s - 1 ).
T(n,k) = A127093(n,k)^(1/2-i*a(k))*transpose(A008683(k)*(A127093(n,k)^(1/2+i*a(n)))) where a(x) is some real number. An example would be T(n,k) = A127093(n,k)^(zetazero(k))*transpose(A008683(k)*(A127093(n,k)^(zetazero(-k)))) but this is of course not special for only the zeta zeros.
Recurrence for a subset of A191898 that is a cross-directional variant of the recurrence in A051731: T(1,1)=1, T(1,2..k)=0, T(2..n,1)=0, n >= k: -Sum_{i=1..k-1} T(n-i,k) - T(n-i,k-1), n < k: -Sum_{i=1..n-1} T(k-i,n) - T(k-i,n-1). Notice that the identity matrix in linear algebra satisfies a similar recurrence:
T(1,1)=1, T(1,2..k)=0, T(2..n,1)=0, n >= k: -Sum_{i=1..n-1} T(n-i,k) - T(n-i,k-1), n < k: -Sum_{i=1..k-1} T(k-i,n) - T(k-i,n-1).
(End)
This array equals A051731*transpose(A143256). - Mats Granvik, Jul 22 2016
T(n,k) = sqrt(A143256(n,k))*transpose(sqrt(A143256(n,k))). - Mats Granvik, Aug 10 2018
Dirichlet generating function for absolute values: Sum_{k>=1} (Sum_{n>=1} abs(T(n,k))/(n^c*k^s)) = zeta(s)*zeta(c)*zeta(s + c - 1)/zeta(2*(s + c - 1))*Product_{k>=1} (1 - 2/(prime(k) + prime(k)^(s + c))). After Vaclav Kotesovec in A173557. - Mats Granvik, Apr 25 2021

A199515 Denominators of: MoebiusMu(n)^2*(n/(n - EulerPhi(n))).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 7, 1, 1, 1, 1, 1, 3, 6, 1, 1, 1, 7, 1, 1, 1, 11, 1, 1, 13, 9, 11, 1, 1, 10, 5, 1, 1, 5, 1, 1, 1, 12, 1, 1, 1, 1, 19, 1, 1, 1, 3, 1, 7, 15, 1, 1, 1, 16, 1, 1, 17, 23, 1, 1, 25, 23, 1, 1, 1, 19, 1, 1, 17, 9, 1, 1, 1, 21, 1, 1, 21, 22, 31, 1, 1, 1
Offset: 2

Author

Mats Granvik, Nov 07 2011

Keywords

Comments

Denominators of zeros to a symmetric polynomial.
See A199514 for numerators and program.

Crossrefs

Cf. A000010, A008683, A191898. Numerators: A199514.

Programs

  • Mathematica
    Table[MoebiusMu[n]^2 (n/(n-EulerPhi[n])),{n,2,90}]//Denominator (* Harvey P. Dale, May 15 2022 *)
  • PARI
    A199515(n) = denominator(issquarefree(n)*(n/(n-eulerphi(n)))); \\ Antti Karttunen, Sep 07 2018

Formula

A199514(n)/a(n) = A008683(n)^2*(n/(n - A000010(n))), n > 1.
a(n) = denominator of A008966(n)*(n/A051953(n)). - Antti Karttunen, Sep 07 2018

A231425 The Schramm triangle: T(n,k) = f(gcd(n,k)), where f = Dirichlet inverse of Euler totient.

Original entry on oeis.org

1, 1, -1, 1, 1, -2, 1, -1, 1, -1, 1, 1, 1, 1, -4, 1, -1, -2, -1, 1, 2, 1, 1, 1, 1, 1, 1, -6, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, -1, 1, -1, -4, -1, 1, -1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -10, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2
Offset: 1

Author

Mats Granvik, Nov 19 2013

Keywords

Comments

When taking matrix powers of the reversed triangle it might be more interesting to start with the first term T(1,1) set to 0.
Three fundamental number theoretic sequences are found from this triangle. The first is the Dirichlet inverse of the Euler totient which are the entries themselves. The Greatest Common Divisor-Fourier transform described by Wolfgang Schramm gives the Möbius function times n =1, -2, -3, 0, ... = A055615, as follows:
1*cos(-2*k*Pi/n) = 1
1*cos(-2*k*Pi/n) -1*cos(-2*k*Pi/n) = -2
1*cos(-2*k*Pi/n) +1*cos(-2*k*Pi/n) -2*cos(-2*k*Pi/n) = -3
The two components in this GCD-Fourier triangle both sum to the sequence 1,0,0,0,0, ... A000007.
1 = 1
1 -1 = 0
1 +1 -2 = 0
...
cos(-2*k*Pi/n) = 1
cos(-2*k*Pi/n), cos(-2*k*Pi/n) = 0
cos(-2*k*Pi/n), cos(-2*k*Pi/n), cos(-2*k*Pi/n) = 0
...
This latter Fourier transform like triangle is also called the chaotic set by some authors.
The third arithmetic sequence is the von Mangoldt function that can be computed as sums with periods equal to rows in this triangle:
1
log(2) = Sum_{n>=0} (1/(n+1) -1/(n+2))
log(3) = Sum_{n>=0} (1/(n+1) +1/(n+2) -2/(n+3))
log(2) = Sum_{n>=0} (1/(n+1) -1/(n+2) +1/(n+3) -1/(n+4))
log(5) = Sum_{n>=0} (1/(n+1) +1/(n+2) +1/(n+3) +1/(n+4) -4/(n+5))
log(1) = Sum_{n>=0} (1/(n+1) -1/(n+2) -2/(n+3) -1/(n+4) +1/(n+5) +2/(n+6))
...
Also the matrix inverse of the reversal of this number triangle gives the all-ones sequence in the first column. Therefore this number triangle is a companion to A054524.
A subset and also a companion to this triangle in terms of Greatest Common Divisor Fourier transform is A054521, since from A054521 one gets the Mobius function while from this triangle one gets the Möbius function elementwise multiplied by the natural numbers.
The special polynomial found in A199514 is also the solution to the row-wise equations of the symmetric polynomial described in A199514 times the chaotic set or Greatest Common Divisor Fourier transform, so that A199514 is the solution.

Crossrefs

Programs

  • Mathematica
    Clear[nn, t, n, k]; nn = 12; t[n_, 1] = 1; t[1, k_] = 1;
    t[n_, k_] := t[n, k] = If[n >= k, -Sum[t[n - i, k], {i, 1, k - 1}], -Sum[t[k - i, n], {i, 1, n - 1}]]; Flatten[Table[Table[t[n, k], {k, 1, n}], {n, 1, nn}]]

Formula

T(n,k) = A023900(gcd(n,k)) for n >= k.
Showing 1-3 of 3 results.