cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A208392 T(n,k)=Number of nXk 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

1, 2, 2, 5, 14, 5, 14, 117, 122, 14, 41, 1017, 3042, 1094, 41, 122, 8838, 76806, 79092, 9842, 122, 365, 76806, 1937736, 5800644, 2056392, 88574, 365, 1094, 667476, 48890520, 424785708, 438083928, 53466192, 797162, 1094, 3281, 5800644
Offset: 1

Views

Author

R. H. Hardin Feb 25 2012

Keywords

Comments

Table starts
....1.......2...........5..............14.................41
....2......14.........117............1017...............8838
....5.....122........3042...........76806............1937736
...14....1094.......79092.........5800644..........424785708
...41....9842.....2056392.......438083928........93120350760
..122...88574....53466192.....33085555344.....20413586117376
..365..797162..1390120992...2498731184736...4475009970818208
.1094.7174454.36143145792.188712490047552.980999326809336384

Examples

			Some solutions for n=4 k=3
..0..0..1....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..1
..2..0..2....0..1..2....1..1..1....0..1..2....1..2..1....2..0..2....2..0..2
..1..0..2....0..0..0....1..0..0....2..0..0....0..2..2....2..2..0....0..2..2
..1..2..1....1..2..0....1..2..2....1..0..1....0..0..2....0..2..1....2..0..2
		

Crossrefs

Column 1 is A007051(n-1)
Column 2 is A199560(n-1)
Row 1 is A007051(n-1)

A233082 T(n,k)=Number of nXk 0..3 arrays with no element x(i,j) adjacent to value 3-x(i,j) horizontally or antidiagonally, top left element zero, and 1 appearing before 2 in row major order.

Original entry on oeis.org

1, 2, 3, 5, 14, 10, 14, 95, 122, 36, 41, 662, 1985, 1094, 136, 122, 4631, 32414, 41675, 9842, 528, 365, 32414, 529862, 1588262, 875165, 88574, 2080, 1094, 226895, 8662343, 60632429, 77824814, 18378455, 797162, 8256, 3281, 1588262, 141615905
Offset: 1

Views

Author

R. H. Hardin, Dec 03 2013

Keywords

Comments

Table starts
......1.........2.............5................14....................41
......3........14............95...............662..................4631
.....10.......122..........1985.............32414................529862
.....36......1094.........41675...........1588262..............60632429
....136......9842........875165..........77824814............6938214854
....528.....88574......18378455........3813415862..........793945203881
...2080....797162.....385947545......186857377214........90851753687090
...8256...7174454....8104898435.....9156011483462.....10396235291448605
..32896..64570082..170202867125...448644562689614...1189649113515482414
.131328.581130734.3574260209615.21983583571791062.136132453105625552657

Examples

			Some solutions for n=3 k=4
..0..1..3..1....0..1..3..1....0..0..0..1....0..0..1..1....0..0..1..0
..1..1..3..2....3..2..3..2....2..0..1..0....2..3..1..3....2..3..2..3
..3..3..2..3....3..3..3..2....2..3..1..3....1..1..3..2....1..3..1..0
		

Crossrefs

Column 1 is A007582(n-1)
Column 2 is A199560(n-1)
Row 1 is A007051(n-1)

Formula

Empirical for column k:
k=1: a(n) = 6*a(n-1) -8*a(n-2)
k=2: a(n) = 10*a(n-1) -9*a(n-2)
k=3: a(n) = 22*a(n-1) -21*a(n-2)
k=4: a(n) = 50*a(n-1) -49*a(n-2)
k=5: a(n) = 118*a(n-1) -411*a(n-2) +294*a(n-3)
k=6: a(n) = 283*a(n-1) -4251*a(n-2) +13573*a(n-3) -9604*a(n-4)
k=7: [order 6]
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 8*a(n-1) -7*a(n-2) for n>3
n=3: a(n) = 19*a(n-1) -45*a(n-2) +27*a(n-3) for n>5
n=4: a(n) = 49*a(n-1) -450*a(n-2) +1466*a(n-3) -1853*a(n-4) +789*a(n-5) for n>8
n=5: [order 10] for n>14
n=6: [order 21] for n>26
n=7: [order 52] for n>58

A199561 a(n) = 3*9^n + 1.

Original entry on oeis.org

4, 28, 244, 2188, 19684, 177148, 1594324, 14348908, 129140164, 1162261468, 10460353204, 94143178828, 847288609444, 7625597484988, 68630377364884, 617673396283948, 5559060566555524, 50031545098999708, 450283905890997364, 4052555153018976268, 36472996377170786404
Offset: 0

Views

Author

Vincenzo Librandi, Nov 08 2011

Keywords

Comments

An Engel expansion of 3 to the base 9 as defined in A181565, with the associated series expansion 3 = 9/4 + 9^2/(4*28) + 9^3/(4*28*244) + 9^4/(4*28*244*2188) + .... Cf. A087289 and A207262. - Peter Bala, Oct 29 2013

Crossrefs

Programs

  • Magma
    [3*9^n+1: n in [0..30]];
  • Mathematica
    3*9^Range[0,20]+1 (* or *) LinearRecurrence[{10,-9},{4,28},20] (* Harvey P. Dale, Jul 30 2019 *)

Formula

a(n) = 4*A066443(n).
a(n) = 9*a(n-1) - 8.
a(n) = 10*a(n-1) - 9*a(n-2).
G.f.: 4*(1-3*x)/((1-x)*(1-9*x)).
From Elmo R. Oliveira, Sep 13 2024: (Start)
E.g.f.: exp(x)*(3*exp(8*x) + 1).
a(n) = 2*A199560(n). (End)
Showing 1-3 of 3 results.