cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199657 Numerators of lower rational approximants of Pi with the first 5 terms given by Adam Adamandy Kochański in 1685, continued using a reconstruction by Fukś that is highly likely to match Kochański's incompletely published method.

Original entry on oeis.org

25, 333, 1667438, 9252915567, 136727214560643, 4607472064276325091, 281395884679127288508771, 31300458157678523147391901818, 3630416277654441522583270655032758, 631040767628866632706111841438119582182, 355477406146830706663807382201012685829049871, 215421112450033407479085892668138597831784081541979
Offset: 1

Views

Author

Jonathan Vos Post, Nov 08 2011

Keywords

Comments

The corresponding denominators are given in A199658.
The reconstruction refers to the calculation of the "genitores" in A191642, for which Kochański only announced that he would describe them in more detail in a future work: "I will explain the aforementioned method more completely in Polymathic thoughts and inventions, which work, if God prolongs my life, I have decided to put out for public benefit" (translation from Latin by H. Fukś).

Examples

			a(1) = 25 because Kochański's first lower bound was 25/8 = a(1)/A199658(1) and his first upper bound was 22/7 = A199671(1)/A199672(1).
a(2) = R(1) * A191642(1) + 3 = 22*15 + 3 = 330 + 3 = 333,
R(2) = R(1) * (A191642(1) + 1 ) + 3 = 22*(15 + 1) + 3 = 355 = A199671(2).
		

Crossrefs

Formula

a(1) = 25; R(1) = A199671(1) = 22;
a(n) = R(n-1)*A191642(n-1) + 3, where A191642 are Kochański's "genitores";
R(n) = R(n-1)*(A191642(n-1) + 1) + 3;

Extensions

More terms from Hugo Pfoertner, Mar 07 2020