A033819 Trimorphic numbers: n^3 ends with n. Also m-morphic numbers for all m > 5 such that m-1 is not divisible by 10 and m == 3 (mod 4).
0, 1, 4, 5, 6, 9, 24, 25, 49, 51, 75, 76, 99, 125, 249, 251, 375, 376, 499, 501, 624, 625, 749, 751, 875, 999, 1249, 3751, 4375, 4999, 5001, 5625, 6249, 8751, 9375, 9376, 9999, 18751, 31249, 40625, 49999, 50001, 59375, 68751, 81249, 90624, 90625
Offset: 1
Examples
376^3 = 53157376 which ends with 376.
References
- S. Premchaud, A class of numbers, Math. Student, 48 (1980), 293-300.
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..1000
- Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.
- Shyam Sunder Gupta, Elegance of Squares, Cubes, and Higher Powers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 2, 29-81.
- Eric Weisstein's World of Mathematics, Trimorphic Number
- Index entries for sequences related to automorphic numbers
Programs
-
Magma
[n: n in [0..10^5] | Intseq(n^3)[1..#Intseq(n)] eq Intseq(n)]; // Bruno Berselli, Apr 04 2013
-
Mathematica
Do[x=Floor[N[Log[10, n], 25]]+1; If[Mod[n^3, 10^x] == n, Print[n]], {n, 1, 10000}] Select[Range[100000],PowerMod[#,3,10^IntegerLength[#]]==#&](* Harvey P. Dale, Nov 04 2011 *) Select[Range[0, 10^5], 10^IntegerExponent[#^3-#, 10]>#&] (* Jean-François Alcover, Apr 04 2013 *)
Comments