cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A200145 Primitive (squarefree) elements of A199745.

Original entry on oeis.org

2145, 2730, 4641, 4845, 5005, 5610, 7410, 8778, 9177, 11305, 11730, 13485, 13585, 17017, 20010, 20930, 21489, 21505, 23529, 26445, 29946, 31465, 31857, 32538, 33649, 34410, 35409, 35581, 36685, 38570, 38874, 41106, 42441, 43401, 45066, 46189, 46345, 47730, 49569
Offset: 1

Views

Author

Ray Chandler, Nov 14 2011

Keywords

Crossrefs

Intersection of A199745 and A005117.

Programs

  • Maple
    Filter:= proc(n) local F;
      F:= ifactors(n)[2];
      if max(seq(f[2],f=F)) > 1 or nops(F) < 4 then return false fi;
      F:= map(t -> t[1],F);
      convert(F,`+`) = 2*(max(F)+min(F));
    end proc:
    select(Filter,[$1..10^5]); # Robert Israel, Dec 31 2015
  • Mathematica
    Select[Range[50000],Max@@Last/@(fi=FactorInteger[#])==1&&Plus@@(pl=First/@fi)/2==pl[[1]]+pl[[-1]]&] (*Ray Chandler, Nov 14 2011*)

A199857 Numbers such that the sum of the squares of the largest and the smallest prime divisor equals the sum of the squares of the other distinct prime divisors.

Original entry on oeis.org

24871, 81719, 81809, 88711, 174097, 198679, 201761, 256151, 273581, 290191, 329681, 405449, 422807, 428281, 472549, 572663, 592999, 604279, 620977, 701561, 728119, 752191, 770431, 876641, 898909, 1011839, 1063517, 1121729, 1178879, 1218679, 1251439, 1389223
Offset: 1

Views

Author

Michel Lagneau, Nov 11 2011

Keywords

Examples

			24871 is in the sequence because the prime distinct divisors are {7, 11, 17, 19} and 19^2 + 7^2 = 11^2 + 17^2 = 410.
Although the early terms are all odd with four distinct prime factors, 7212590 = 2 * 5 * 7 * 11 * 17 * 19 * 29 has seven distinct prime factors, and 2^2 + 29^2 = 5^2 + 7^2 + 11^2 + 17^2 + 19^2 = 845. - _D. S. McNeil_, Nov 12 2011
		

Crossrefs

Cf. A199745.

Programs

  • Maple
    isA199857 := proc(n)
    local p;
    p := sort(convert((numtheory[factorset](n)), list)) ;
    if nops(p) >= 3 then
    return ( op(1, p)^2 + op(-1, p)^2 = add(op(i, p)^2, i=2..nops(p)-1) ) ;
    else
    false;
    end if;
    end proc:
    for n from 2 to 1500000 do
    if isA199857(n) then
    printf("%d, ", n) ;
    end if ;
    end do: # program from R. J. Mathar adapted for this sequence - see A199745
  • Mathematica
    Select[Range[1400000], Plus@@((pl=First/@FactorInteger[#])^2/2) == pl[[1]]^2+pl[[-1]]^2&] (* program from Ray Chandler adapted for this sequence - see A199745 *)

A199924 Numbers k such that the sum of the largest and the smallest prime divisor of k^2 + 1 equals the sum of the other distinct prime divisors.

Original entry on oeis.org

948, 1560, 1772, 2153, 2697, 8487, 11293, 12553, 13236, 18065, 32247, 36984, 40452, 43999, 55945, 94536, 100512, 107607, 127224, 134223, 214641, 218783, 366937, 425808, 429855, 595471, 620865, 645327, 757382, 850416, 875784, 1241106, 1330849, 1363977, 1387689
Offset: 1

Views

Author

Michel Lagneau, Nov 12 2011

Keywords

Comments

Generalization of A192770 and A192771.

Examples

			2697 is in the sequence because 2697^2 + 1 = 7273810 has five distinct divisors  2, 5, 41, 113, 157 and 157 + 2 = 5 + 41 + 113 = 159.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1400000],Plus@@((pl=First/@FactorInteger[#^2+1])/2)==pl[[1]]+pl[[-1]]&](* program of Ray Chandler adapted for this sequence - see A199745 *)
Showing 1-3 of 3 results.