A199824 Primes in successive intervals (2^i +1 .. 2^(i+1) -1) i=1,2,3,... such that there are no prime symmetric XOR couples in either the original interval or any recursively halved interval that contains them.
67, 167, 587, 719, 751, 769, 1129, 1163, 1531, 1913, 2099, 2153, 2543, 2819, 3049, 3079, 3709, 3967, 4691, 4861, 4909, 5147, 5347, 5749, 5813, 5939, 6121, 6151, 6397, 6473, 6563, 6709, 6883, 6899, 6911, 7247, 7393, 7451, 7703, 7829, 7919, 8093, 8171, 8447, 8707, 8807, 8963, 9157, 9161, 9209
Offset: 1
Keywords
Examples
In the interval (17 .. 31) i=4 the numbers are coupled symmetrically around the middle of the interval by XORing each with 2^i -2 where i=4 or 14. |-------XOR 14-------| | |--------------| | | | |--------| | | | | | |--| | | | 17 19 21 23 25 27 29 31 (17,31), (19,29) are prime XOR couples but the prime 23 has a composite couple (23,25). 23 is in the first half of the interval. XORing each number in the first half of the interval with 2^i -2 where i=3 or 6 |---XOR 6---| | |---| | 17 19 21 23 (17,23) is a prime XOR couple and all primes in the interval have been coupled, therefore there are no primes with only composite couples in the interval (17 .. 31). The first such prime occurs in the interval (65 ..127) and is 67
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A000040.
Programs
-
Magma
XOR := func; for i:= 4 to 16 do "****", i; for j:= 2^(i) +1 to 2^(i+1) -1 by 2 do sympair:=0; for k:= 2 to i do xornum:=2^k -2; xorcouple:=XOR(j,xornum); if (IsPrime(j) and IsPrime(xorcouple)) then sympair:=1; end if; end for; if ((sympair eq 0) and IsPrime(j)) then j; end if; end for; end for;
-
Maple
q:= (l, p, r)-> r-l=2 or not isprime(l+r-p) and `if`((l+r)/2>p, q(l, p, (l+r)/2), q((l+r)/2, p, r)): a:= proc(n) local p, l; p:= `if`(n=1, 3, a(n-1)); do p:= nextprime(p); l:= 2^ilog2(p); if q(l, p, l+l) then break fi od; a(n):=p end: seq(a(n), n=1..60); # Alois P. Heinz, Nov 13 2011
-
Mathematica
q[l_, p_, r_] := r - l == 2 || ! PrimeQ[l + r - p] && If[(l + r)/2 > p, q[l, p, (l + r)/2], q[(l + r)/2, p, r]]; a[n_] := a[n] = Module[{p, l}, p = If[n == 1, 3, a[n - 1]]; While[True, p = NextPrime[p]; l = 2^(Length[IntegerDigits[p, 2]]-1); If[q[l, p, l+l], Break[]]]; p]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jul 11 2021, after Alois P. Heinz *)
Comments