cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A182108 Odd composite numbers in successive intervals [2^i +1 .. 2^(i+1) -1] i=1,2,3... such that there are only composite symmetric XOR couples in either the original interval or any recursively halved interval that contains them.

Original entry on oeis.org

513, 695, 925, 1177, 1355, 1395, 1507, 1681, 1685, 1687, 1689, 1819, 1827, 1893, 1959, 2043, 2165, 2169, 2637, 2651, 2757, 2875, 2987, 3159, 3339, 3417, 3503, 3649, 3681, 3743, 3873, 3963, 3975, 4041, 4169, 4353, 4489, 4767, 4773, 4805, 4845, 4881, 5123
Offset: 1

Views

Author

Brad Clardy, Apr 12 2012

Keywords

Comments

The description of the process is outlined in A199824. Up to the interval that starts 2^10 there are only 109 of these numbers, while there are a mere 50 primes of the type in A199824.

Crossrefs

Cf. A199824.

Programs

  • Magma
    XOR := func;
    function IsClardynum(X,i)
      if i eq 1 then
        return true;
      else
        xornum:=2^i - 2;
        xorcouple:=XOR(X,xornum);
        if (IsPrime(xorcouple)) then
           return false;
        else
           return IsClardynum(X,i-1);
        end if;
      end if;
    end function;
    for i:= 3 to 10001 by 2 do
       if not IsPrime(i) then
          if IsClardynum(i,Ilog2(i)) then i;
          end if;
       end if;
    end for;

A200143 Nodes of degree 1 in graphs of XOR connected primes in successive intervals [2^i+1,2^(i+1)-1], i>=1.

Original entry on oeis.org

5, 7, 11, 13, 23, 47, 61, 83, 131, 191, 211, 223, 241, 317, 331, 397, 467, 479, 491, 503, 509, 563, 577, 613, 727, 743, 757, 829, 887, 907, 941, 947, 997, 1009, 1021, 1039, 1069, 1087, 1097, 1109, 1223, 1229, 1237, 1381, 1399, 1423, 1447, 1523, 1543, 1549
Offset: 1

Views

Author

Brad Clardy, Nov 14 2011

Keywords

Comments

The number used to produce the XOR couple is 2^i-2, with i sharing the index value of the initial interval and decremented in halved intervals down to 2.

Examples

			In the interval [17,31], i=4, the XOR couple number is 2^4-2=14. For half intervals it is 2^3-2 = 6, and the final application would be 2^2-2 = 2. All of the pairings can be represented as:
|-------XOR 14-------|
|  |--------------|  |
|  |  |--------|  |  |
|  |  |  |--|  |  |  |
17 19 21 23 25 27 29 31
|-XOR  6-|  |-XOR  6-|
|  |--|  |  |  |--|  |
17 19 21 23 25 27 29 31
XOR   XOR   XOR   XOR
|2-|  |2-|  |2-|  |2-|
17 19 21 23 25 27 29 31
The prime XOR couples are (17,31), (19,29), (17,23), (17,19), (29,31) which produces the graph:
  17 19 23 29 31
17 0  1  1  0  1             19
19 1  0  0  1  0           /    \
23 1  0  0  0  0   or  23~17~31~29
29 0  1  0  0  1
31 1  0  0  1  0
Therefore 23 is the only node of degree 1 in the interval.
		

Crossrefs

Cf. A199824.

Programs

  • Maple
    q:= (l, p, r)-> `if`(r-l=2, 0, `if`(isprime(l+r-p), 1, 0)+
                    `if`((l+r)/2>p, q(l, p, (l+r)/2), q((l+r)/2, p, r))):
    a:= proc(n) local p, l;
          p:= `if`(n=1, 1, a(n-1));
          do p:= nextprime(p);
             l:= 2^ilog2(p);
             if q(l, p, l+l)=1 then break fi
          od; a(n):=p
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Nov 15 2011
  • Mathematica
    q[l_, p_, r_] := q[l, p, r] = If[r - l == 2, 0, If[PrimeQ[l + r - p], 1, 0] + If[(l + r)/2 > p, q[l, p, (l + r)/2], q[(l + r)/2, p, r]]];
    a[n_] := a[n] = Module[{p, l}, p = If[n==1, 1, a[n-1]]; While[True, p = NextPrime[p]; l = 2^Floor@Log[2, p]; If[q[l, p, l+l]==1, Break[]]]; p];
    Array[a, 60] (* Jean-François Alcover, Nov 12 2020, after Alois P. Heinz *)
Showing 1-2 of 2 results.