A199857 Numbers such that the sum of the squares of the largest and the smallest prime divisor equals the sum of the squares of the other distinct prime divisors.
24871, 81719, 81809, 88711, 174097, 198679, 201761, 256151, 273581, 290191, 329681, 405449, 422807, 428281, 472549, 572663, 592999, 604279, 620977, 701561, 728119, 752191, 770431, 876641, 898909, 1011839, 1063517, 1121729, 1178879, 1218679, 1251439, 1389223
Offset: 1
Keywords
Examples
24871 is in the sequence because the prime distinct divisors are {7, 11, 17, 19} and 19^2 + 7^2 = 11^2 + 17^2 = 410. Although the early terms are all odd with four distinct prime factors, 7212590 = 2 * 5 * 7 * 11 * 17 * 19 * 29 has seven distinct prime factors, and 2^2 + 29^2 = 5^2 + 7^2 + 11^2 + 17^2 + 19^2 = 845. - _D. S. McNeil_, Nov 12 2011
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A199745.
Programs
-
Maple
isA199857 := proc(n) local p; p := sort(convert((numtheory[factorset](n)), list)) ; if nops(p) >= 3 then return ( op(1, p)^2 + op(-1, p)^2 = add(op(i, p)^2, i=2..nops(p)-1) ) ; else false; end if; end proc: for n from 2 to 1500000 do if isA199857(n) then printf("%d, ", n) ; end if ; end do: # program from R. J. Mathar adapted for this sequence - see A199745
-
Mathematica
Select[Range[1400000], Plus@@((pl=First/@FactorInteger[#])^2/2) == pl[[1]]^2+pl[[-1]]^2&] (* program from Ray Chandler adapted for this sequence - see A199745 *)