cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199936 Total sum of Fibonacci parts in all partitions of n.

Original entry on oeis.org

0, 1, 4, 9, 16, 31, 52, 80, 133, 197, 298, 428, 621, 879, 1230, 1696, 2329, 3142, 4231, 5619, 7447, 9781, 12771, 16553, 21391, 27440, 35089, 44600, 56510, 71232, 89538, 112011, 139759, 173679, 215279, 265840, 327527, 402162, 492703, 601830, 733550, 891634
Offset: 0

Views

Author

Omar E. Pol, Nov 21 2011

Keywords

Examples

			For n = 6 we have:
--------------------------------------
.                         Sum of
Partitions            Fibonacci parts
--------------------------------------
6 .......................... 0
3 + 3 ...................... 6
4 + 2 ...................... 2
2 + 2 + 2 .................. 6
5 + 1 ...................... 6
3 + 2 + 1 .................. 6
4 + 1 + 1 .................. 2
2 + 2 + 1 + 1 .............. 6
3 + 1 + 1 + 1 .............. 6
2 + 1 + 1 + 1 + 1 .......... 6
1 + 1 + 1 + 1 + 1 + 1 ...... 6
------------------------------------
Total ..................... 52
So a(6) = 52.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
          `if`(i>n, 0, ((p, m)-> p +`if`(issqr(m+4) or issqr(m-4),
          [0, p[1]*i], 0))(b(n-i, i), 5*i^2)) +b(n, i-1)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 01 2017
  • Mathematica
    max = 42; F = Fibonacci; gf = Sum[F[i]*x^F[i]/(1-x^F[i]), {i, 2, max}] / Product[1-x^j, {j, 1, max}] + O[x]^max; CoefficientList[gf, x] (* Jean-François Alcover, Feb 21 2017, after Ilya Gutkovskiy *)
    b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, 0, If[i>n, 0, Function[{p, m}, p+If[IntegerQ @ Sqrt[m+4] || IntegerQ @ Sqrt[m-4], {0, p[[1]]*i}, 0] ][b[n-i, i], 5*i^2]]+b[n, i-1]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 21 2017, after Alois P. Heinz *)

Formula

G.f.: Sum_{i>=2} Fibonacci(i)*x^Fibonacci(i)/(1 - x^Fibonacci(i)) / Product_{j>=1} (1 - x^j). - Ilya Gutkovskiy, Feb 01 2017

Extensions

More terms from Alois P. Heinz, Nov 21 2011