cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A091533 Triangle read by rows, related to Pascal's triangle, starting with rows 1; 1,1.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 3, 7, 7, 3, 5, 15, 21, 15, 5, 8, 30, 53, 53, 30, 8, 13, 58, 124, 157, 124, 58, 13, 21, 109, 273, 417, 417, 273, 109, 21, 34, 201, 577, 1029, 1239, 1029, 577, 201, 34, 55, 365, 1181, 2405, 3375, 3375, 2405, 1181, 365, 55, 89, 655, 2358, 5393, 8625, 10047, 8625, 5393, 2358, 655, 89
Offset: 0

Views

Author

Christian G. Bower, Jan 19 2004

Keywords

Comments

T(n,k) is the number of lattice paths from (0,0) to (k,n-k) using steps (1,0),(2,0),(0,1),(0,2),(1,1). - Seiichi Manyama, Apr 26 2025.

Examples

			This triangle begins:
   1;
   1,   1;
   2,   3,    2;
   3,   7,    7,    3;
   5,  15,   21,   15,    5;
   8,  30,   53,   53,   30,     8;
  13,  58,  124,  157,  124,    58,   13;
  21, 109,  273,  417,  417,   273,  109,   21;
  34, 201,  577, 1029, 1239,  1029,  577,  201,   34;
  55, 365, 1181, 2405, 3375,  3375, 2405, 1181,  365,  55;
  89, 655, 2358, 5393, 8625, 10047, 8625, 5393, 2358, 655, 89;
  ...
		

Crossrefs

Row sums: A015518(n+1). Columns 0-1: A000045(n+1), A023610(n-1).
Cf. A090174, A212338 (column 2), A192364 (central terms).
Cf. A036355.

Programs

Formula

T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k) + T(n-2, k-1) + T(n-2, k-2) for n >= 2, k >= 0, with initial conditions specified by first two rows.
G.f.: A(x, y) = 1/(1-x-x*y-x^2-x^2*y-x^2*y^2).
Sum_{k = 0..n} T(n,k)*x^k = A000045(n+1), A015518(n+1), A015524(n+1), A200069(n+1) for x = 0, 1, 2, 3 respectively. - Philippe Deléham, Oct 30 2013
Sum_{k = 0..floor(n/2)} T(n-k,k) = (-1)^n*A079926(n). - Philippe Deléham, Oct 30 2013

A228815 Symmetric triangle, read by rows, related to Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 10, 14, 10, 3, 5, 20, 36, 36, 20, 5, 8, 38, 83, 106, 83, 38, 8, 13, 71, 182, 281, 281, 182, 71, 13, 21, 130, 382, 690, 834, 690, 382, 130, 21, 34, 235, 778, 1606, 2268, 2268, 1606, 778, 235, 34, 55, 420, 1546, 3586, 5780, 6750
Offset: 0

Views

Author

Philippe Deléham, Oct 30 2013

Keywords

Comments

Triangles satisfying the same recurrence: A091533, A091562, A185081, A205575, A209137, A209138.

Examples

			Triangle begins :
0
1, 1
1, 2, 1
2, 5, 5, 2
3, 10, 14, 10, 3
5, 20, 36, 36, 20, 5
8, 38, 83, 106, 83, 38, 8
13, 71, 182, 281, 281, 182, 71, 13
21, 130, 382, 690, 834, 690, 382, 130, 21
34, 235, 778, 1606, 2268, 2268, 1606, 778, 235, 34
55, 420, 1546, 3586, 5780, 6750, 5780, 3586, 1546, 420, 55
		

Crossrefs

Cf. A000045 (1st column), A001629 (2nd column), A008998, A152011, A261055 (3rd column).

Formula

G.f.: x*(1+y)/(1-x-x*y-x^2-x^2*y-x^2*y^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = 0, T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n.
Sum_{k = 0..n} T(n,k)*x^k = A000045(n), 2*A015518(n), 3*A015524(n), 4*A200069(n) for x = 0, 1, 2, 3 respectively.
Sum_{k = 0..floor(n/2)} T(n-k,k) = A008998(n+1).
Showing 1-2 of 2 results.