cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200074 G.f. satisfies A(x) = (1 + x*A(x)^2)*(1 + x^2*A(x)).

Original entry on oeis.org

1, 1, 3, 9, 30, 108, 406, 1577, 6280, 25499, 105169, 439388, 1855636, 7908909, 33975250, 146954693, 639460707, 2797384235, 12295494109, 54272825103, 240480529815, 1069257987503, 4769306203838, 21334400243252, 95687482105807, 430217846136134, 1938651904470374, 8754225470415889
Offset: 0

Views

Author

Paul D. Hanna, Nov 13 2011

Keywords

Comments

More generally, for fixed parameters p, q, r, and s, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^(n*r)*F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^(k*s)*F(x)^(k*q)] ),
then F(x) = (1 + x^r*F(x)^(p+1))*(1 + x^(r+s)*F(x)^(p+q+1)).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 30*x^4 + 108*x^5 + 406*x^6 + 1577*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 24*x^3 + 87*x^4 + 330*x^5 + 1289*x^6 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 46*x^3 + 180*x^4 + 720*x^5 + 2928*x^6 +...
where A(x) = 1 + x*A(x)^2 + x^2*A(x) + x^3*A(x)^3.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (A + x)*x + (A^2 + 2^2*x*A + x^2)*x^2/2 +
(A^3 + 3^2*x*A^2 + 3^2*x^2*A + x^3)*x^3/3 +
(A^4 + 4^2*x*A^3 + 6^2*x^2*A^2 + 4^2*x^3*A + x^4)*x^4/4 +
(A^5 + 5^2*x*A^4 + 10^2*x^2*A^3 + 10^2*x^3*A^2 + 5^2*x^4*A + x^5)*x^5/5 +
(A^6 + 6^2*x*A^5 + 15^2*x^2*A^4 + 20^2*x^3*A^3 + 15^2*x^4*A^2 + 6^2*x^5*A + x^6)*x^6/6 +...
more explicitly,
log(A(x)) = x + 5*x^2/2 + 19*x^3/3 + 77*x^4/4 + 331*x^5/5 + 1445*x^6/6 + 6392*x^7/7 + 28565*x^8/8 +...
		

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(A=(1+x*A^2)*(1+x^2*A), A), x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 16 2012
  • Mathematica
    m = 28; A[_] = 0;
    Do[A[x_] = (1 + x A[x]^2)(1 + x^2 A[x]) + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 02 2019 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1+x*A^2)*(1+x^2*A^1)+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j/A^j)*(x*A+x*O(x^n))^m/m))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x/A)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j/A^j)*x^m*A^m/m))); polcoeff(A, n, x)}

Formula

G.f. satisfies:
(1) A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^2 * x^k*A(x)^(n-k)) * x^n/n ).
(2) A(x) = exp( Sum_{n>=1} (1-x/A(x))^(2*n+1)*(Sum_{k>=0} C(n+k,k)^2*x^k/A(x)^k) * x^n*A(x)^n/n ).
(3) A(x) = x / Series_Reversion( x*G(x) ) where G(x) is the g.f. of A199876.
(4) A(x) = G(x/A(x)) where G(x) = A(x*G(x)) is the g.f. of A199876.
Recurrence: (n+1)*(n+2)*(1241*n^4 - 10636*n^3 + 25417*n^2 - 7382*n - 17136)*a(n) = - 18*(n+1)*(443*n^3 - 3889*n^2 + 9734*n - 5712)*a(n-1) + 4*(6205*n^6 - 53180*n^5 + 115741*n^4 + 64762*n^3 - 370103*n^2 + 246727*n - 25704)*a(n-2) + 6*(2482*n^6 - 24995*n^5 + 76519*n^4 - 36347*n^3 - 185471*n^2 + 293092*n - 140400)*a(n-3) + 2*(4964*n^6 - 57436*n^5 + 228617*n^4 - 276802*n^3 - 361447*n^2 + 956696*n - 320496)*a(n-4) - 6*(2482*n^6 - 32441*n^5 + 140587*n^4 - 173153*n^3 - 266705*n^2 + 677518*n - 291840)*a(n-5) + 12*(n-4)*(2*n - 11)*(11*n^2 + 73*n - 748)*a(n-6) + 2*(n-5)*(2*n - 13)*(1241*n^4 - 5672*n^3 + 955*n^2 + 16508*n - 8496)*a(n-7). - Vaclav Kotesovec, Aug 18 2013
a(n) ~ c*d^n/n^(3/2), where d = 4.770539985405... is the root of the equation -4 + 12*d^2 - 8*d^3 - 12*d^4 - 20*d^5 + d^7 = 0 and c = 0.612892860188927397373456... - Vaclav Kotesovec, Aug 18 2013
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-3*k+1,k) * binomial(2*n-3*k+1,n-2*k) / (2*n-3*k+1). - Seiichi Manyama, Jul 18 2023