A200258 a(n) = Fibonacci(8n+7) mod Fibonacci(8n+1).
32, 1508, 70844, 3328160, 156352676, 7345247612, 345070285088, 16210958151524, 761569962836540, 35777577295165856, 1680784562909958692, 78961096879472892668, 3709490768772315996704, 174267105035419378952420, 8186844445895938494767036
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..600
- Index entries for linear recurrences with constant coefficients, signature (47,-1).
Programs
-
Magma
I:=[32, 1508]; [n le 2 select I[n] else 47*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jul 12 2012
-
Mathematica
Table[Mod[Fibonacci[(8 n + 7)] , Fibonacci[(8 n + 1)]], {n, 1, 16}] CoefficientList[Series[4*(8+x)/(1-47*x+x^2),{x,0,20}],x] (* Vincenzo Librandi, Jul 12 2012 *)
Formula
From Bruno Berselli, Nov 17 2011: (Start)
G.f.: 4*x*(8+x)/(1-47*x+x^2).
a(n) = 47*a(n-1)-a(n-2).
a(n) = ((-5+3r)*(47+21r)^n-(5+3r)*(47-21r)^n)/(5*2^(n-1)) where r=sqrt(5). (End)