A200677 Smallest semiprime such that the sum of the two prime factors equals n, or zero if impossible.
0, 0, 0, 4, 6, 9, 10, 15, 14, 21, 0, 35, 22, 33, 26, 39, 0, 65, 34, 51, 38, 57, 0, 95, 46, 69, 0, 115, 0, 161, 58, 87, 62, 93, 0, 155, 0, 217, 74, 111, 0, 185, 82, 123, 86, 129, 0, 215, 94, 141, 0, 235, 0, 329, 106, 159, 0, 265, 0, 371, 118, 177, 122, 183, 0
Offset: 1
Keywords
Examples
a(10) = 21 because 21 = 3*7 and 3+7 = 10, and there is no semiprime smaller than 21 whose two prime factors sum to 10.
Programs
-
Maple
with(numtheory):for n from 1 to 65 do:ii:=0:for k from 1 to 1000 while(ii=0)do:m1:=bigomega(k):x:=factorset(k): m2:=nops(x):if m1=2 and m2=2 and x[1]+x[2]= n or m1=2 and m2=1 and 2*x[1]= n then ii:=1: printf(`%d, `,k):else fi:od:if ii=0 then printf(`%d, `,0):else fi:od:
Formula
Extensions
Edited by Jon E. Schoenfield and Manfred Scheucher, Aug 09 2015
Comments