cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200850 The number of forests of labeled rooted strictly binary trees (each vertex has exactly two children or none) on n nodes.

Original entry on oeis.org

1, 1, 1, 4, 13, 91, 511, 5146, 41329, 544573, 5704381, 93001096, 1203040741, 23391560479, 360416247283, 8142893840446, 145661102170081, 3750604005834361, 76415186203927129, 2209120481052933868, 50510327090854792861, 1620053085929867956291
Offset: 0

Views

Author

Geoffrey Critzer, Nov 23 2011

Keywords

Crossrefs

Cf. A036770.

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, add((n-1)!/(n-1-2*j)! *binomial(2*j+1, j)/
                           (2^j) *a(n-1-2*j), j=0..(n-1)/2))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 23 2011
  • Mathematica
    Range[0,19]! CoefficientList[Series[Exp[(1-(1-2x^2)^(1/2))/x],{x,0,19}],x]

Formula

E.g.f.: exp(A(x)) where A(x) is the e.g.f. for A036770.
Recurrence: 2*a(n) = -(n-2)*(n+1)*a(n-1) + 2*(n-1)*(2*n-3)*a(n-2) + 2*(n-3)*(n-2)*(n-1)^2*a(n-3). - Vaclav Kotesovec, Aug 14 2013
a(n) ~ 2^(n/2+1/2)*n^(n-1)*exp(-n-sqrt(2))*(exp(2*sqrt(2))-(-1)^n). - Vaclav Kotesovec, Aug 14 2013