cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200878 Composite numbers whose prime factors have equal numbers of bits.

Original entry on oeis.org

4, 6, 8, 9, 12, 16, 18, 24, 25, 27, 32, 35, 36, 48, 49, 54, 64, 72, 81, 96, 108, 121, 125, 128, 143, 144, 162, 169, 175, 192, 216, 243, 245, 256, 288, 289, 323, 324, 343, 361, 384, 391, 432, 437, 486, 493, 512, 527, 529, 551, 576, 589, 625, 648, 667, 713
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 23 2011

Keywords

Examples

			7429 = 17*19*23 -> 10001*10011*10111, therefore 7429 is a term.
7430 = 2*5*743 -> 10*101*1011100111, therefore 7430 is not a term.
		

Crossrefs

Supersequence of A085721 and of A182302.

Programs

  • Mathematica
    lst = {}; Do[b = IntegerDigits[FactorInteger[n], 2]; If[! PrimeQ[n] && Length[b[[-1, 1]]] == Length[b[[1, 1]]], AppendTo[lst, n]], {n, 4, 6!}]; lst (* Arkadiusz Wesolowski, Dec 03 2011 *)
    Select[Range[800],CompositeQ[#]&&Length[Union[IntegerLength[ #,2]&/@ FactorInteger[ #][[All,1]]]]==1&] (* Harvey P. Dale, Oct 11 2021 *)
  • PARI
    is(n)=my(f=factor(n)[,1]);#binary(f[1])==#binary(f[#f])&&!isprime(n) \\ Charles R Greathouse IV, Dec 23 2011