cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A380520 Numbers m such that the sum of squares of nondivisors of m is prime.

Original entry on oeis.org

5, 6, 26, 38, 66, 166, 206, 238, 266, 318, 321, 333, 341, 369, 405, 406, 445, 458, 481, 553, 606, 658, 706, 784, 873, 893, 933, 946, 1125, 1166, 1173, 1273, 1286, 1293, 1353, 1546, 1578, 1606, 1666, 1678, 1705, 1726, 1745, 1773, 1781, 1786, 1858, 1906, 1918, 1941
Offset: 1

Views

Author

Michel Lagneau, Jan 26 2025

Keywords

Examples

			Nondivisors of 6 are {4, 5} and their sum of squares 4^2 + 5^2 = 41 is prime.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local d;
          isprime(n*(n+1)*(2*n+1)/6 - add(d^2,d=numtheory:-divisors(n)))
    end proc:
    select(filter, [$1..2000]); # Robert Israel, Feb 26 2025
  • Mathematica
    Q1[n_]:=(n > 0) && PrimeQ[n]; Select[Range[2000], Q1[#(#+1)(2#+1)/6 - DivisorSigma[2, #]] &]
  • PARI
    isok(k) = isprime(norml2(setminus([1..k], divisors(k)))); \\ Michel Marcus, Jan 28 2025

A277794 Numbers k such that the sum of proper divisors of k is a prime, and the sum of the numbers less than k that do not divide k is also a prime.

Original entry on oeis.org

4, 21, 85, 129, 201, 237, 324, 325, 517, 549, 669, 837, 865, 1081, 1137, 1161, 1165, 1309, 1389, 1677, 1765, 2169, 2233, 2304, 2305, 2469, 2709, 2737, 2761, 3265, 3297, 3745, 3961, 4161, 4285, 4693, 4705, 4741, 4989, 5061, 5221, 5349, 5817, 5949, 6249, 6457, 6517, 6685, 6789, 6813, 6853, 6921
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 31 2016

Keywords

Comments

Intersection of A037020 and A200981.
Numbers k such that A000005(A001065(k)) = A000005(A024816(k)) = 2 or A000005(A000203(k) - k) = A000005(A000217(k) - A000203(k)) = 2.
All terms are composite (A002808).

Examples

			21 is in the sequence because 21 has three proper divisors {1, 3, 7}, and therefore seventeen non-divisors {2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, so the sum of proper divisors is 1 + 3 + 7 = 11 (which is prime) and the sum of non-divisors is 2 + 4 + 5 + 6 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 = 199 (which is also prime).
22 is not in the sequence because its three proper divisors {1, 2, 11} add up to 14, which is composite.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local t; t:= numtheory:-sigma(n) - n; isprime(t) and isprime(n*(n-1)/2 - t) end proc:
    select(f, [$1..10^4]); # Robert Israel, Nov 10 2016
  • Mathematica
    Select[Range[7000], DivisorSigma[0, #1 ((#1 + 1)/2) - DivisorSigma[1, #1]] == 2 && DivisorSigma[0, DivisorSigma[1, #1] - #1] == 2 & ]

A380569 Numbers m such that the sum of cubes of nondivisors of m is prime.

Original entry on oeis.org

22, 82, 130, 144, 154, 178, 226, 274, 309, 322, 325, 514, 562, 565, 586, 670, 778, 1018, 1078, 1081, 1137, 1498, 1618, 1837, 1894, 1906, 1918, 1921, 2182, 2194, 2230, 2254, 2350, 2493, 2497, 2530, 2605, 2686, 2698, 2866, 3130, 3202, 3346, 3370, 3418, 3421, 3502
Offset: 1

Views

Author

Michel Lagneau, Jan 27 2025

Keywords

Examples

			Nondivisors of 22 are {3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21} and their sum of cubes 3^3 + 4^3 + 5^3 + 6^3 + 7^3 +8^3 + 9^3 + 10^3 + 12^3 + 13^3 + 14^3 + 15^3 + 16^3 + 17^3 + 18^3 + 19^3 + 20^3 + 21^3 = 52021 is prime.
		

Crossrefs

Programs

  • Mathematica
    Q1[n_]:=(n > 0) && PrimeQ[n]; Select[Range[3502], Q1[(#(#+1)/2)^2 - DivisorSigma[3, #]] &]
  • PARI
    isok(m) = isprime(sum(k=1, m-1, if (m%k, k^3))); \\ Michel Marcus, Feb 09 2025
Showing 1-3 of 3 results.